Effects of Turbulent Mixing on the Structure and Macroscopic Properties of Stratocumulus Clouds Demonstrated by a Lagrangian Trajectory Model

L. Magaritz-Ronen Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by L. Magaritz-Ronen in
Current site
Google Scholar
PubMed
Close
,
M. Pinsky Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by M. Pinsky in
Current site
Google Scholar
PubMed
Close
, and
A. Khain Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by A. Khain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of turbulent mixing in the formation of the structure of stratocumulus clouds is investigated using a Lagrangian–Eulerian parcel cloud model. The model contains approximately 2000–5000 adjacent parcels with the linear size of 25–40 m, moving with a turbulent-like velocity field with observed energetic and statistical properties. The process of turbulent mixing of Lagrangian parcels is parameterized using the k-epsilon theory extended to the case of mixing nonconservative values. The model includes the interaction of cloud and the overlying inversion layer. The stratocumulus clouds observed during flight RF01 of the Second Dynamics and Chemistry of the Marine Stratocumulus field study (DYCOMS II) are simulated.

Effects of turbulent mixing are analyzed by comparing simulations with and without mixing. When mixing between parcels is included, the thermodynamical and microphysical structure of the measured stratocumulus clouds is properly reproduced. Mixing leads to a more uniform cloud structure with well-defined borders. Good agreement is found between Paluch diagrams calculated in the model and those reproduced from measurements. The radius of correlation of liquid water content and other variables calculated in the model is on the order of several hundred meters and agrees well with observations. When mixing is not included, the radius of correlation is on the scale of a single parcel and the cloud layer contains dry entrained parcels, making the microphysical structure unrealistic. It is also shown that turbulent mixing leads to an increase in the effective radius and facilitates and accelerates drizzle formation. The time in which a 40-m air parcel preserves its identification is estimated from the results and is found to be on the order of 25 min.

Corresponding author address: Leehi Magaritz-Ronen, Department of Atmospheric Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel. E-mail: leehi.magaritz@mail.huji.ac.il

Abstract

The role of turbulent mixing in the formation of the structure of stratocumulus clouds is investigated using a Lagrangian–Eulerian parcel cloud model. The model contains approximately 2000–5000 adjacent parcels with the linear size of 25–40 m, moving with a turbulent-like velocity field with observed energetic and statistical properties. The process of turbulent mixing of Lagrangian parcels is parameterized using the k-epsilon theory extended to the case of mixing nonconservative values. The model includes the interaction of cloud and the overlying inversion layer. The stratocumulus clouds observed during flight RF01 of the Second Dynamics and Chemistry of the Marine Stratocumulus field study (DYCOMS II) are simulated.

Effects of turbulent mixing are analyzed by comparing simulations with and without mixing. When mixing between parcels is included, the thermodynamical and microphysical structure of the measured stratocumulus clouds is properly reproduced. Mixing leads to a more uniform cloud structure with well-defined borders. Good agreement is found between Paluch diagrams calculated in the model and those reproduced from measurements. The radius of correlation of liquid water content and other variables calculated in the model is on the order of several hundred meters and agrees well with observations. When mixing is not included, the radius of correlation is on the scale of a single parcel and the cloud layer contains dry entrained parcels, making the microphysical structure unrealistic. It is also shown that turbulent mixing leads to an increase in the effective radius and facilitates and accelerates drizzle formation. The time in which a 40-m air parcel preserves its identification is estimated from the results and is found to be on the order of 25 min.

Corresponding author address: Leehi Magaritz-Ronen, Department of Atmospheric Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel. E-mail: leehi.magaritz@mail.huji.ac.il
Save
  • Andrejczuk, M., J. M. Reisner, B. Henson, M. K. Dubey, and C. A. Jeffery, 2008: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type? J. Geophys. Res., 113, D19204, doi:10.1029/2007JD009445.

    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. W. Grabowski, S. P. Malinowski, and P. K. Smolarkiewicz, 2009: Numerical simulation of cloud–clear air interfacial mixing: Homogeneous versus inhomogeneous mixing. J. Atmos. Sci., 66, 24932500, doi:10.1175/2009JAS2956.1.

    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. W. Grabowski, J. Reisner, and A. Gadian, 2010: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model. J. Geophys. Res., 115, D22214, doi:10.1029/2010JD014248.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36, 16121615, doi:10.1175/1520-0469(1979)036<1612:TEODSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., and J. Latham, 1982: A diffusive model of the turbulent mixing of dry and cloudy air. Quart. J. Roy. Meteor. Soc., 108, 871898, doi:10.1002/qj.49710845809.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., R. G. Corbin, and J. Latham, 1980: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106, 581598, doi:10.1002/qj.49710644914.

    • Search Google Scholar
    • Export Citation
  • Bar-Or, R. Z., I. Koren, O. Altaratz, and E. Fredj, 2012: Radiative properties of humidified aerosols in cloudy environment. Atmos. Res., 118, 280294, doi:10.1016/j.atmosres.2012.07.014.

    • Search Google Scholar
    • Export Citation
  • Benmoshe, N., M. Pinsky, A. Pokrovsky, and A. Khain, 2012: Turbulent effects on the microphysics and initiation of warm rain in deep convective clouds: 2-D simulations by a spectral mixed-phase microphysics cloud model. J. Geophys. Res., 117, D06220, doi:10.1029/2011JD016603.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., T. W. Choularton, G. Fullarton, J. Latham, C. S. Mill, M. H. Smith, and I. M. Stromberg, 1980: The influence of entrainment on the evolution of cloud droplet spectra: II. Field experiments at Great Dun Fell. Quart. J. Roy. Meteor. Soc., 106, 821840, doi:10.1002/qj.49710645012.

    • Search Google Scholar
    • Export Citation
  • Bower, K. N., and T. W. Choularton, 1993: Cloud processing of the cloud condensation nucleus spectrum and its climatological consequences. Quart. J. Roy. Meteor. Soc., 119, 655679, doi:10.1002/qj.49711951204.

    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J.-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011, doi:10.1175/JAS3928.1.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., S. G. Lasher-Trapp, and A. M. Blyth, 2011: Initiation of coalescence in a cumulus cloud: A beneficial influence of entrainment and mixing. Atmos. Chem. Phys. Discuss., 11, 10 55710 613, doi:10.5194/acpd-11-10557-2011.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., S. G. Lasher-Trapp, and A. M. Blyth, 2013: The influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud. J. Atmos. Sci., 70, 17271743, doi:10.1175/JAS-D-12-0128.1.

    • Search Google Scholar
    • Export Citation
  • Devenish, B. J., and Coauthors, 2012: Droplet growth in warm turbulent clouds. Quart. J. Roy. Meteor. Soc., 138, 14011429, doi:10.1002/qj.1897.

    • Search Google Scholar
    • Export Citation
  • Erlick, C., A. Khain, M. Pinsky, and Y. Segal, 2005: The effect of wind velocity fluctuations on drop spectrum broadening in stratocumulus clouds. Atmos. Res., 75, 1545, doi:10.1016/j.atmosres.2004.10.007.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. M. Kreidenweis, and Y. P. Zhang, 1998: Stratocumulus processing of gases and cloud condensation nuclei: 1. Trajectory ensemble model. J. Geophys. Res., 103, 19 52719 542, doi:10.1029/98JD01750.

    • Search Google Scholar
    • Export Citation
  • Freud, E., and D. Rosenfeld, 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, doi:10.1029/2011JD016457.

    • Search Google Scholar
    • Export Citation
  • Freud, E., D. Rosenfeld, M. O. Andreae, A. A. Costa, and P. Artaxo, 2008: Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds. Atmos. Chem. Phys., 8, 16611675, doi:10.5194/acp-8-1661-2008.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., 2000: Structure of small cumulus clouds. Proc. 13th Int. Conf. on Clouds and Precipitation, Reno, NV, WMO, 105108.

  • Gerber, H., G. M. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A, 87106, doi:10.2151/jmsj.86A.87.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., G. Feingold, and W. R. Cotton, 2000: Radiative impacts on the growth of a population of drops within simulated summertime Arctic stratus. J. Atmos. Sci., 57, 766785, doi:10.1175/1520-0469(2000)057<0766:RIOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, A. A., G. Feingold, and H. Jiang, 2009: The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. J. Atmos. Sci., 66, 14501464, doi:10.1175/2008JAS2909.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and M. B. Baker, 1989: A simple model of droplet spectral evolution during turbulent mixing. J. Atmos. Sci., 46, 28122829, doi:10.1175/1520-0469(1989)046<2812:ASMODS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katzwinkel, J., H. Siebert, and R. A. Shaw, 2011: Observation of a self-limiting, shear-induced turbulent inversion layer above marine stratocumulus. Bound.-Layer Meteor., 145, 131143, doi:10.1007/s10546-011-9683-4.

    • Search Google Scholar
    • Export Citation
  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224, doi:10.1016/S0169-8095(00)00064-8.

    • Search Google Scholar
    • Export Citation
  • Khain, A., M. Pinsky, L. Magaritz, O. Krasnov, and H. W. J. Russchenberg, 2008: Combined observational and model investigations of the Z–LWC relationship in stratocumulus clouds. J. Appl. Meteor. Climatol., 47, 591606, doi:10.1175/2007JAMC1701.1.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., 1995: Mesoscale processes of cloud formation, cloud-radiation interaction, and their modelling with explicit cloud microphysics. Atmos. Res., 39, 167, doi:10.1016/0169-8095(95)00012-G.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 1999: Toward the theory of stochastic condensation in clouds. Part I: A general kinetic equation. J. Atmos. Sci., 56, 39853996, doi:10.1175/1520-0469(1999)056<3985:TTTOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., J. A. Curry, I. Gultepe, and K. Strawbridge, 2003: A springtime cloud over the Beaufort Sea polynya: Three-dimensional simulation with explicit spectral microphysics and comparison with observations. J. Geophys. Res., 108, 4296, doi:10.1029/2001JD001489.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and L. J. Miller, 1998: Early radar echoes from small, warm cumulus: Bragg and hydrometeor scattering. J. Atmos. Sci., 55, 29742992, doi:10.1175/1520-0469(1998)055<2974:EREFSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2000: Drop growth due to high supersaturation caused by isobaric mixing. J. Atmos. Sci., 57, 16751685, doi:10.1175/1520-0469(2000)057<1675:DGDTHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., M. Pinsky, and A. Khain, 2013: A new mechanism of droplet size spectra broadening during diffusional growth. J. Atmos. Sci., 70, 2051–2071, doi:10.1175/JAS-D-12-0182.1.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., C.-W. Su, and P. A. McMurtry, 1997: Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci., 54, 26972712, doi:10.1175/1520-0469(1997)054<2697:MEAFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, B., J. Schumacher, and R. A. Shaw, 2012: Cloud microphysical effects of turbulent mixing and entrainment. Theor. Comput. Fluid Dyn., 27, 361–376.

    • Search Google Scholar
    • Export Citation
  • Lehmann, K., H. Siebert, and R. A. Shaw, 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 36413659, doi:10.1175/2009JAS3012.1.

    • Search Google Scholar
    • Export Citation
  • Magaritz, L., M. Pinsky, O. Krasnov, and A. Khain, 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part II: Lucky parcels. J. Atmos. Sci., 66, 781805, doi:10.1175/2008JAS2789.1.

    • Search Google Scholar
    • Export Citation
  • Magaritz, L., M. Pinsky, and A. Khain, 2010: Effects of stratocumulus clouds on aerosols in the maritime boundary layer. Atmos. Res., 97, 498512, doi:10.1016/j.atmosres.2010.06.010.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yglom, 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press, 886 pp.

  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36, 24672478, doi:10.1175/1520-0469(1979)036<2467:TEMICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., 1986: Mixing and the cloud droplet size spectrum: Generalizations from the CCOPE data. J. Atmos. Sci., 43, 19841993, doi:10.1175/1520-0469(1986)043<1984:MATCDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and C. A. Knight, 1984: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci., 41, 18011815, doi:10.1175/1520-0469(1984)041<1801:MATEOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., J.-L. Brenguier, and F. Burnet, 2000: Microphysical properties of stratocumulus clouds. Atmos. Res., 55, 1533, doi:10.1016/S0169-8095(00)00054-5.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., and A. P. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128, 501533, doi:10.1256/003590002321042072.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742764, doi:10.1175/1520-0469(2001)058<0742:CEODIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., L. Magaritz, A. Khain, O. Krasnov, and A. Sterkin, 2008: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part I: Model description and first results in a nonmixing limit. J. Atmos. Sci., 65, 20642086, doi:10.1175/2007JAS2486.1.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. Khain, and L. Magaritz, 2010: Representing turbulent mixing of non-conservative values in Eulerian and Lagrangian cloud models. Quart. J. Roy. Meteor. Soc., 136, 1228–1242, doi:10.1002/qj.624.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., I. P. Mazin, A. Korolev, and A. Khain, 2013: Supersaturation and diffusional droplet growth in liquid clouds. J. Atmos. Sci., 70, 2778–2793, doi:10.1175/JAS-D-12-077.1.

    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., A. Khain, R. S. Maheshkumar, G. Pandithurai, J. R. Kulkarni, M. Konwar, and B. N. Goswami, 2011: Microphysics of premonsoon and monsoon clouds as seen from in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). J. Atmos. Sci., 68, 18821901, doi:10.1175/2011JAS3707.1.

    • Search Google Scholar
    • Export Citation
  • Riechelmann, T., Y. Noh, and S. Raasch, 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008, doi:10.1088/1367-2630/14/6/065008.

    • Search Google Scholar
    • Export Citation
  • Schlüter, M. H., 2006: The effects of entrainment and mixing processes on the droplet size distributions in cumuli. M.S. thesis, Dept. of Meteorology, University of Utah, 184 pp.

  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, doi:10.1002/qj.441.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., K. Lehmann, M. Wendisch, H. Franke, R. Maser, D. Schell, E. Wei Saw, and R. A. Shaw, 2006: Probing finescale dynamics and microphysics of clouds with helicopter-borne measurements. Bull. Amer. Meteor. Soc., 87, 17271738, doi:10.1175/BAMS-87-12-1727.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 467–15 472, doi:10.1029/JC093iC12p15467.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 9801006, doi:10.1175/1520-0469(1996)053<0980:EOTMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593, doi:10.1175/BAMS-84-5-579.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, doi:10.1175/MWR2930.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 398 140 70
PDF Downloads 205 57 3