Large-Eddy Simulation of Stratified Turbulence. Part I: A Vortex-Based Subgrid-Scale Model

Daniel Chung Department of Mechanical Engineering, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Daniel Chung in
Current site
Google Scholar
PubMed
Close
and
Georgios Matheou Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Georgios Matheou in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The stretched-vortex subgrid-scale (SGS) model is extended to enable large-eddy simulation of buoyancy-stratified turbulence. Both stable and unstable stratifications are considered. The extended model retains the anisotropic form of the original stretched-vortex model, but the SGS kinetic energy and the characteristic SGS eddy size are modified by buoyancy subject to two constraints: first, the SGS kinetic energy dynamics is determined by stationary and homogeneous conditions, and second, the SGS eddy size obeys a scaling analogous to the Monin–Obukhov similarity theory. The SGS model construction, comprising an ensemble of subgrid stretched-vortical structures, naturally limits vertical mixing but allows horizontal mixing provided the alignment of the SGS vortex ensemble is favorable, even at high nominal gradient Richardson numbers. In very stable stratification, the model recovers the z-less limit, in which a vortex-based Obukhov length controls the SGS dynamics, while in very unstable stratification, the model recovers the free-convection limit, in which a vortex-based Deardorff velocity controls the SGS dynamics. The efficacy of the present SGS model is demonstrated by simulating the canonical stationary and homogeneous, stratified sheared turbulence at high Reynolds numbers and moderately high Richardson numbers. In the postprocessing, the SGS dynamics of the stretched-vortex model is further interrogated to yield predictions of buoyancy-adjusted one-dimensional SGS spectra and SGS root-mean-square velocity-derivative fluctuations.

Corresponding author address: Daniel Chung, Department of Mechanical Engineering, University of Melbourne, Melbourne VIC 3010, Australia. E-mail: daniel.chung@unimelb.edu.au

Abstract

The stretched-vortex subgrid-scale (SGS) model is extended to enable large-eddy simulation of buoyancy-stratified turbulence. Both stable and unstable stratifications are considered. The extended model retains the anisotropic form of the original stretched-vortex model, but the SGS kinetic energy and the characteristic SGS eddy size are modified by buoyancy subject to two constraints: first, the SGS kinetic energy dynamics is determined by stationary and homogeneous conditions, and second, the SGS eddy size obeys a scaling analogous to the Monin–Obukhov similarity theory. The SGS model construction, comprising an ensemble of subgrid stretched-vortical structures, naturally limits vertical mixing but allows horizontal mixing provided the alignment of the SGS vortex ensemble is favorable, even at high nominal gradient Richardson numbers. In very stable stratification, the model recovers the z-less limit, in which a vortex-based Obukhov length controls the SGS dynamics, while in very unstable stratification, the model recovers the free-convection limit, in which a vortex-based Deardorff velocity controls the SGS dynamics. The efficacy of the present SGS model is demonstrated by simulating the canonical stationary and homogeneous, stratified sheared turbulence at high Reynolds numbers and moderately high Richardson numbers. In the postprocessing, the SGS dynamics of the stretched-vortex model is further interrogated to yield predictions of buoyancy-adjusted one-dimensional SGS spectra and SGS root-mean-square velocity-derivative fluctuations.

Corresponding author address: Daniel Chung, Department of Mechanical Engineering, University of Melbourne, Melbourne VIC 3010, Australia. E-mail: daniel.chung@unimelb.edu.au
Save
  • Aluie, H., and G. L. Eyink, 2009: Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter. Phys. Fluids,21, 115108, doi:10.1063/1.3266948.

  • Batchelor, G. K., 1953: The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.

  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., C. Higgins, H. Huwald, C. Meneveau, and M. B. Parlange, 2010: Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J. Fluid Mech., 665, 480515, doi:10.1017/S0022112010004015.

    • Search Google Scholar
    • Export Citation
  • Brethouwer, G., P. Billant, E. Lindborg, and J.-M. Chomaz, 2007: Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech., 585, 343368, doi:10.1017/S0022112007006854.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., and J. C. Wyngaard, 1978: Model study of stably stratified planetary boundary layer. J. Atmos. Sci., 35, 14271440, doi:10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and F. Minotti, 1993: Stratified turbulence in the atmosphere and oceans: A new subgrid model. J. Atmos. Sci., 50, 19251935, doi:10.1175/1520-0469(1993)050<1925:STITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chung, D., and D. I. Pullin, 2009: Large-eddy simulation and wall modelling of turbulent channel flow. J. Fluid Mech., 631, 281309, doi:10.1017/S0022112009006867.

    • Search Google Scholar
    • Export Citation
  • Chung, D., and B. J. McKeon, 2010: Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech., 661, 341364, doi:10.1017/S0022112010002995.

    • Search Google Scholar
    • Export Citation
  • Chung, D., and D. I. Pullin, 2010: Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence. J. Fluid Mech., 643, 279308, doi:10.1017/S0022112009992801.

    • Search Google Scholar
    • Export Citation
  • Chung, D., and G. Matheou, 2012: Direct numerical simulation of stationary homogeneous stratified sheared turbulence. J. Fluid Mech., 696, 434467, doi:10.1017/jfm.2012.59.

    • Search Google Scholar
    • Export Citation
  • Corrsin, S., 1974: Limitations of gradient transport models in random walks and in turbulence. Advances in Geophysics, Vol. 25, Academic Press, 25–60.

    • Search Google Scholar
    • Export Citation
  • Cuijpers, J. W. M., and P. G. Duynkerke, 1993: Large eddy simulation of trade wind cumulus clouds. J. Atmos. Sci., 50, 38943908, doi:10.1175/1520-0469(1993)050<3894:LESOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dalaudier, F., and C. Sidi, 1990: Some characteristics of the turbulent buoyancy subrange. Adv. Space Res., 10, 3740, doi:10.1016/0273-1177(90)90005-K.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, doi:10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Domaradzki, A. J., W. Liu, and M. E. Brachet, 1993: An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence. Phys. Fluids, 5A, 1747, doi:10.1063/1.858850.

    • Search Google Scholar
    • Export Citation
  • Faddy, J. M., and D. I. Pullin, 2005: Flow structure in a model of aircraft trailing vortices. Phys. Fluids,17, 085106, doi:10.1063/1.1955536.

  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? A shift in the research agenda. Bull. Amer. Meteor. Soc., 91, 14751484, doi:10.1175/2010BAMS2770.1.

    • Search Google Scholar
    • Export Citation
  • Ferrante, A., G. Matheou, and P. E. Dimotakis, 2011: LES of an inclined sonic jet into a turbulent crossflow at Mach 3.6. J. Turbul., 12, N2, doi:10.1080/14685248.2010.522580.

    • Search Google Scholar
    • Export Citation
  • Gregg, M., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92 (C5), 52495286, doi:10.1029/JC092iC05p05249.

  • Hill, D. J., and D. I. Pullin, 2004: Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. J. Comput. Phys., 194, 435450, doi:10.1016/j.jcp.2003.07.032.

    • Search Google Scholar
    • Export Citation
  • Hill, D. J., C. Pantano, and D. I. Pullin, 2006: Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech., 557, 2961, doi:10.1017/S0022112006009475.

    • Search Google Scholar
    • Export Citation
  • Inoue, M., and D. I. Pullin, 2011: Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to Reθ = O(1012). J. Fluid Mech., 686, 507533, doi:10.1017/jfm.2011.342.

    • Search Google Scholar
    • Export Citation
  • Inoue, M., R. Mathis, I. Marusic, and D. I. Pullin, 2012: Inner-layer intensities for the flate-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Phys. Fluids,24, 075102, doi:10.1063/1.4731299.

  • Ivey, G. N., K. B. Winters, and J. R. Koseff, 2008: Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech., 40, 169184, doi:10.1146/annurev.fluid.39.050905.110314.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Coté, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, doi:10.1002/qj.49709841707.

    • Search Google Scholar
    • Export Citation
  • Kaneda, Y., T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno, 2003: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids, 15, L21, doi:10.1063/1.1539855.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., D. I. Pullin, and R. Samtaney, 2002: Subgrid-scale modelling for large-eddy simulations of compressible turbulence. Phys. Fluids, 14, 15111522, doi:10.1063/1.1458006.

    • Search Google Scholar
    • Export Citation
  • Leonard, A., 1974: Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in Geophysics, Vol. 18, Academic Press, 237248, doi:10.1016/S0065-2687(08)60464-1.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, doi:10.1111/j.2153-3490.1962.tb00128.x.

  • Lundgren, T. S., 1982: Strained spiral vortex model for turbulent fine structure. Phys. Fluids, 25, 21932203, doi:10.1063/1.863957.

  • Mason, P. J., 1985: A numerical study of cloud streets in the planetary boundary layer. Bound.-Layer Meteor., 32, 281304, doi:10.1007/BF00121884.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1994: Large-eddy simulation: A critical review of the technique. Quart. J. Roy. Meteor. Soc., 120, 126, doi:10.1002/qj.49712051503.

    • Search Google Scholar
    • Export Citation
  • Matheou, G., and D. Chung, 2012: Direct numerical simulation of stratified turbulence. Phys. Fluids,24, 091106, doi:10.1063/1.4747156.

  • Matheou, G., A. M. Bonanos, C. Pantano, and P. E. Dimotakis, 2010: Large-eddy simulation of mixing in a recirculating shear flow. J. Fluid Mech., 646, 375414, doi:10.1017/S0022112009992965.

    • Search Google Scholar
    • Export Citation
  • Matheou, G., D. Chung, L. Nuijens, B. Stevens, and J. Teixeira, 2011: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev., 139, 29182939, doi:10.1175/2011MWR3599.1.

    • Search Google Scholar
    • Export Citation
  • Mattner, T. W., 2011: Large-eddy simulations of turbulent mixing layers using the stretched-vortex model. J. Fluid Mech., 671, 507534, doi:10.1017/S002211201000580X.

    • Search Google Scholar
    • Export Citation
  • Metais, O., and M. Lesieur, 1992: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech., 239, 157194, doi:10.1017/S0022112092004361.

    • Search Google Scholar
    • Export Citation
  • Misra, A., and D. I. Pullin, 1997: A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids, 9, 24432454, doi:10.1063/1.869361.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nedić, J., J. C. Vassilicos, and B. Ganapathisubramani, 2013: Axisymmetric turbulent wakes with new nonequilibrium similarity scalings. Phys. Rev. Lett.,111, 144503, doi:10.1103/PhysRevLett.111.144503.

  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and D. I. Pullin, 2003: The velocity-scalar cross spectrum of stretched spiral vortices. Phys. Fluids, 15, 280291, doi:10.1063/1.1527916.

    • Search Google Scholar
    • Export Citation
  • Pantano, C., R. Deiterding, D. J. Hill, and D. I. Pullin, 2007: A low-numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. J. Comput. Phys., 221, 6387, doi:10.1016/j.jcp.2006.06.011.

    • Search Google Scholar
    • Export Citation
  • Pantano, C., D. I. Pullin, P. Dimotakis, and G. Matheou, 2008: LES approach for high Reynolds number wall-bounded flows with application to turbulent channel flow. J. Comput. Phys., 227, 92719291, doi:10.1016/j.jcp.2008.04.015.

    • Search Google Scholar
    • Export Citation
  • Pardyjak, E. R., P. Monti, and H. J. S. Fernando, 2002: Flux Richardson number measurements in stable atmospheric flows. J. Fluid Mech., 459, 307316, doi:10.1017/S0022112002008406.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2004: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys., 6, 35, doi:10.1088/1367-2630/6/1/035.

    • Search Google Scholar
    • Export Citation
  • Pullin, D. I., 2000: A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids, 12, 23112316, doi:10.1063/1.1287512.

    • Search Google Scholar
    • Export Citation
  • Pullin, D. I., and P. G. Saffman, 1993: On the Lundgren–Townsend model of turbulent fine scales. Phys. Fluids, 5, 126145, doi:10.1063/1.858798.

    • Search Google Scholar
    • Export Citation
  • Pullin, D. I., and P. G. Saffman, 1994: Reynolds stresses and one-dimensional spectra for a vortex model of homogeneous anisotropic turbulence. Phys. Fluids, 6, 17871796, doi:10.1063/1.868240.

    • Search Google Scholar
    • Export Citation
  • Pullin, D. I., and T. S. Lundgren, 2001: Axial motion and scalar transport in stretched spiral vortices. Phys. Fluids, 13, 25532563, doi:10.1063/1.1388207.

    • Search Google Scholar
    • Export Citation
  • Rollin, B., Y. Dubief, and C. R. Doering, 2011: Variations on Kolmogorov flow: Turbulent energy dissipation and mean flow profiles. J. Fluid Mech., 670, 204213, doi:10.1017/S0022112010006294.

    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., and D. I. Pullin, 1996: Calculation of velocity structure functions for vortex models of isotropic turbulence. Phys. Fluids, 8, 30723084, doi:10.1063/1.869081.

    • Search Google Scholar
    • Export Citation
  • Saito, N., D. I. Pullin, and M. Inoue, 2012: Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow. Phys. Fluids,24, 075103, doi:10.1063/1.4731301.

  • She, Z. S., E. Jackson, and S. A. Orszag, 1990: Intermittent vortex structures in homogeneous isotropic turbulence. Nature, 344, 226228, doi:10.1038/344226a0.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., S. Tavoularis, and S. Corrsin, 1982: A test of gradient transport and its generalizations. Turbulent Shear Flows III, L. J. S. Bradbury et al., Eds., Springer-Verlag, 96–112, doi:10.1007/978-3-642-95410-8_10.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643, doi:10.1146/annurev.earth.33.092203.122658.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, doi:10.1175/MWR2930.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1935: Statistical theory of turbulence. Proc. Roy. Soc. London, 151A, 421478, doi:10.1098/rspa.1935.0158.

  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Voelkl, T., D. I. Pullin, and D. C. Chan, 2000: A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Phys. Fluids, 12, 18101825, doi:10.1063/1.870429.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 406 pp.

  • Xu, H., A. Pumir, and E. Bodenschatz, 2011: The pirouette effect in turbulent flows. Nat. Phys., 7, 709712, doi:10.1038/nphys2010.

  • Yeung, P. K., and J. G. Brasseur, 1991: The response of isotropic turbulence to isotropic and anisotropic forcing at the large scales. Phys. Fluids, 3A, 884, doi:10.1063/1.857966.

    • Search Google Scholar
    • Export Citation
  • Yeung, P. K., D. A. Donzis, and K. R. Sreenivasan, 2005: High-Reynolds-number simulation of turbulent mixing. Phys. Fluids,17, 081703, doi:10.1063/1.2001690.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1461 542 230
PDF Downloads 693 145 0