Comment on “Direct Numerical Simulation of the Turbulent Ekman Layer: Evaluation of Closure Models”

Juan Carlos Bergmann Hamburg, Germany

Search for other papers by Juan Carlos Bergmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Corresponding author address: Juan Bergmann, Postfach 500625, 22706 Hamburg, Germany. E-mail: aeolicus@web.de

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-11-0107.1.

Corresponding author address: Juan Bergmann, Postfach 500625, 22706 Hamburg, Germany. E-mail: aeolicus@web.de

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-11-0107.1.

Save
  • Arya, S. P. S., 1978: Comparative effects of stability, baroclinicity and scale-height ratio on drag laws for the atmospheric boundary layer. J. Atmos. Sci., 35, 4046, doi:10.1175/1520-0469(1978)035<0040:CEOSBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baas, P., B. J. H. van de Wiel, L. van den Brink, and A. A. M. Holtslag, 2012: Composite hodographs and inertial oscillations in the nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 138, 528–535, doi:10.1002/qj.941.

    • Search Google Scholar
    • Export Citation
  • Bergmann, J., 1997: On the quantification of vertical exchange in an idealized neutral PBL: A physical derivation of the exchange coefficient. Contrib. Atmos. Phys., 70, 6577.

    • Search Google Scholar
    • Export Citation
  • Bergmann, J., 1998: A physical interpretation of von Karman’s constant based on asymptotic considerations—A new value. J. Atmos. Sci., 55, 34033405, doi:10.1175/1520-0469(1998)055<3403:APIOVK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bergmann, J., 2006: Comments on: ‘The Neutral, Barotropic Planetary Boundary Layer, Capped by a Low-Level Inversion’ by G. D. Hess, Boundary-Layer Meteorology (2004) 110, pp. 319–355. Bound.-Layer Meteor., 119, 171179, doi:10.1007/s10546-005-9012-x.

    • Search Google Scholar
    • Export Citation
  • Caldwell, D. R., C. W. van Atta, and K. N. Helland, 1972: A laboratory study of the turbulent Ekman layer. Geophys. Fluid Dyn., 3, 125160.

    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., 1988: Measurements of the angle between the wind vector and wind stress vector in the surface layer over the North Sea. J. Geophys. Res., 93 (C7), 82158220, doi:10.1029/JC093iC07p08215.

    • Search Google Scholar
    • Export Citation
  • Hess, G. D., and J. R. Garratt, 2002: Evaluating models of the neutral, barotropic planetary boundary layer using integral measures: Part I. Overview. Bound.-Layer Meteor., 104, 333358, doi:10.1023/A:1016521215844.

    • Search Google Scholar
    • Export Citation
  • Lettau, H., 1962: Theoretical wind spirals in the boundary layer of a barotropic atmosphere. Beitr. Phys. Atmos.,35, 195212.

  • Lettau, H., and H. Hoeber, 1964: Über die Bestimmung der Höhenverteilung von Schubspannung und Austauschkoeffizient in der atmosphärischen Reibungsschicht. Beitr. Phys. Atmos.,37, 105–118.

    • Search Google Scholar
    • Export Citation
  • Long, R. R., 1974: Mean stresses and velocities in the neutral, barotropic planetary boundary layer. Bound.-Layer Meteor.,7, 475–487.

  • Marlatt, S., S. Waggy, and S. Biringen, 2012: Direct numerical simulation of the turbulent Ekman layer: Evaluation of closure models. J. Atmos. Sci., 69, 11061117, doi:10.1175/JAS-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • Roth, R., M. Hofmann, and C. Wode, 1999: Geostrophic wind, gradient wind, thermal wind and the vertical wind profile—A sample analysis within a planetary boundary layer over Arctic sea-ice. Bound.-Layer Meteor., 92, 327339, doi:10.1023/A:1001850123085.

    • Search Google Scholar
    • Export Citation
  • Spalart, P. R., G. N. Coleman, and R. Johnstone, 2008: Direct numerical simulation of the Ekman layer: A step in Reynolds number, and cautious support for a log law with a shifted origin. Phys. Fluids, 20, 101507, doi:10.1063/1.3005858.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1973a: The logarithmic wind profile. J. Atmos. Sci., 30, 234238, doi:10.1175/1520-0469(1973)030<0234:TLWP>2.0.CO;2.

  • Tennekes, H., 1973b: Similarity laws and scale relations in planetary boundary layers. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc.

  • Yamada, T., 1976: On the similarity functions A,B and C of the planetary boundary layer. J. Atmos. Sci., 33, 781793, doi:10.1175/1520-0469(1976)033<0781:OTSFAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zanoun, E.-S., F. Durst, and H. Nagib, 2003: Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys. Fluids, 15, 30793089, doi:10.1063/1.1608010.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1989: Velocity profiles, the resistance law and the dissipation rate of mean flow kinetic energy in a neutrally and stably stratified planetary boundary layer. Bound.-Layer Meteor., 46, 367387, doi:10.1007/BF00172242.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., P.-E. Johansson, D. V. Mironov, and A. Baklanov, 1998: A similarity-theory model for wind profile and resistance law in stably stratified planetary boundary layers. J. Wind Eng. Ind. Aerodyn., 74–76, 209218, doi:10.1016/S0167-6105(98)00018-X.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 29 2
PDF Downloads 36 15 2