A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals

Bastiaan van Diedenhoven Center for Climate System Research, Columbia University, and NASA Goddard Institute for Space Research, New York, New York

Search for other papers by Bastiaan van Diedenhoven in
Current site
Google Scholar
PubMed
Close
,
Andrew S. Ackerman NASA Goddard Institute for Space Research, New York, New York

Search for other papers by Andrew S. Ackerman in
Current site
Google Scholar
PubMed
Close
,
Brian Cairns NASA Goddard Institute for Space Research, New York, New York

Search for other papers by Brian Cairns in
Current site
Google Scholar
PubMed
Close
, and
Ann M. Fridlind NASA Goddard Institute for Space Research, New York, New York

Search for other papers by Ann M. Fridlind in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A parameterization is presented that provides extinction cross section σe, single-scattering albedo ω, and asymmetry parameter g of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, σe is always twice the particle projected area. It is shown that ω is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of g with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and ω are investigated and factors are determined to scale the parameterized g to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 μm, revealing absolute differences with reference calculations of ω and g that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-13-0205.s1.

Corresponding author address: Bastiaan van Diedenhoven, 2880 Broadway, New York, NY 10025. E-mail: bastiaan.vandiedenhoven@nasa.gov

Abstract

A parameterization is presented that provides extinction cross section σe, single-scattering albedo ω, and asymmetry parameter g of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, σe is always twice the particle projected area. It is shown that ω is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of g with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and ω are investigated and factors are determined to scale the parameterized g to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 μm, revealing absolute differences with reference calculations of ω and g that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-13-0205.s1.

Corresponding author address: Bastiaan van Diedenhoven, 2880 Broadway, New York, NY 10025. E-mail: bastiaan.vandiedenhoven@nasa.gov

Supplementary Materials

    • Supplemental Materials (PY 7.63 KB)
Save
  • Auer, A., and D. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, doi:10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, B., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110 (14–16), 12391260, doi:10.1016/j.jqsrt.2009.02.026.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 4569, doi:10.1016/j.atmosres.2012.04.010.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 18851895, doi:10.1175/JAM2308.1.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y. X. Hu, and S. M. Bedka, 2005b: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911, doi:10.1175/JAM2309.1.

    • Search Google Scholar
    • Export Citation
  • Böhm, J. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 2419–2427.

  • Böhm, J. P., 1992: A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speed of hydrometeors. Atmos. Res., 27, 253274, doi:10.1016/0169-8095(92)90035-9.

    • Search Google Scholar
    • Export Citation
  • Born, M., and E. Wolf, 1999: Principles of Optics.7th ed. Cambridge University Press, 985 pp.

  • Bryant, F., and P. Latimer, 1969: Optical efficiencies of large particles of arbitrary shape and orientation. J. Colloid Interface Sci., 30, 291304, doi:10.1016/0021-9797(69)90396-8.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., P. Goloub, J. Riedi, J. De Haan, J. Hovenier, and P. Flamant, 2001: Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1. J. Geophys. Res., 106 (D8), 79557966, doi:10.1029/2000JD900285.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. A. J., and P. Chylek, 1975: The two-stream approximation in radiative transfer: Including the angle of the incident radiation. J. Atmos. Sci., 32, 409418, doi:10.1175/1520-0469(1975)032<0409:TTSAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edwards, J., S. Havemann, J.-C. Thelen, and A. Baran, 2007: A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83, 1935, doi:10.1016/j.atmosres.2006.03.002.

    • Search Google Scholar
    • Export Citation
  • Foot, J. S., 1988: Some observations of the optical properties of clouds. II: Cirrus. Quart. J. Roy. Meteor. Soc., 114, 145164, doi:10.1002/qj.49711447908.

    • Search Google Scholar
    • Export Citation
  • Francis, P. N., A. Jones, R. W. Saunders, K. P. Shine, A. Slingo, and Z. Sun, 1994: An observational and theoretical study of the radiative properties of cirrus: Some results from ICE’89. Quart. J. Roy. Meteor. Soc., 120, 809848, doi:10.1002/qj.49712051804.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A., and Coauthors, 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res.,117, D05204, doi:10.1029/2011JD016595.

  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 20582082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 2007: A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 4140–4150, doi:10.1175/2007JAS2289.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., W. B. Sun, and P. Yang, 1999: Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths. J. Atmos. Sci., 56, 29372947, doi:10.1175/1520-0469(1999)056<2937:MOSAAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., P. V. Hobbs, and H. Gerber, 2001: Shortwave, single-scattering properties of arctic ice clouds. J. Geophys. Res., 106 (D14), 15 15515 172, doi:10.1029/2000JD900195.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., and S. G. Warren, 1999: Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res., 104 (D24), 31 69731 709, doi:10.1029/1999JD900496.

    • Search Google Scholar
    • Export Citation
  • Guimarães, L., and H. Nussenzveig, 1992: Theory of Mie resonances and ripple fluctuations. Opt. Commun., 89 (5–6), 363369, doi:10.1016/0030-4018(92)90540-8.

    • Search Google Scholar
    • Export Citation
  • Hess, M., R. B. Koelemeijer, and P. Stammes, 1998: Scattering matrices of imperfect hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 60, 301308, doi:10.1016/S0022-4073(98)00007-7.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57, 916–938, doi:10.1175/1520-0469(2000)057<0916:CCTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iaquinta, J., H. Isaka, and P. Personne, 1995: Scattering phase function of bullet rosette ice crystals. J. Atmos. Sci., 52, 14011413, doi:10.1175/1520-0469(1995)052<1401:SPFOBR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kato, S., T. P. Ackerman, J. H. Mather, and E. E. Clothiaux, 1999: The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109121, doi:10.1016/S0022-4073(98)00075-2.

    • Search Google Scholar
    • Export Citation
  • Key, J. R., P. Yang, B. A. Baum, and S. Nasiri, 2002: Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res., 107, 4181, doi:10.1029/2001JD000742.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K.-N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21, 857875, doi:10.1175/1520-0426(2004)021<0857:RSOLWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, doi:10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., J. Edwards, and D. Mitchell, 1999: A new parameterization scheme for the optical properties of ice crystals for use in general circulation models of the atmosphere. Phys. Chem. Earth, 24B, 231236, doi:10.1016/S1464-1909(98)00043-4.

    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., J. Edwards, and D. Mitchell, 2000: Impact of a new scheme for optical properties of ice crystals on climates of two GCMs. J. Geophys. Res., 105 (D8), 10 063–10 079, doi:10.1029/2000JD900015.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and V. Oinas, 1991: A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96 (D5), 90279063, doi:10.1029/90JD01945.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., E. Jensen, D. L. Mitchell, B. Baker, Q. Mo, and B. Pilson, 2010: Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J. Geophys. Res., 115, D00J08, doi:10.1029/2009JD013017.

    • Search Google Scholar
    • Export Citation
  • Lindqvist, H., K. Muinonen, T. Nousiainen, J. Um, G. M. McFarquhar, P. Haapanala, R. Makkonen, and H. Hakkarainen, 2012: Ice-cloud particle habit classification using principal components. J. Geophys. Res.,117, D16206, doi:10.1029/2012JD017573.

  • Liu, X., S. Ding, L. Bi, and P. Yang, 2012: On the use of scattering kernels to calculate ice cloud bulk optical properties. J. Atmos. Oceanic Technol., 29, 5063, doi:10.1175/JTECH-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Macke, A., M. I. Mishchenko, K. Muinonen, and B. E. Carlson, 1995: Scattering of light by large nonspherical particles: Ray-tracing approximation versus T-matrix method. Opt. Lett., 20, 1934–1936, doi:10.1364/OL.20.001934.

    • Search Google Scholar
    • Export Citation
  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 28132825, doi:10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mauno, P., G. M. McFarquhar, P. Räisänen, M. Kahnert, M. S. Timlin, and T. Nousiainen, 2011: The influence of observed cirrus microphysical properties on shortwave radiation: A case study over Oklahoma. J. Geophys. Res.,116, D22208, doi:10.1029/2011JD016058.

  • McFarquhar, G. M., and A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds. J. Atmos. Sci., 55, 2039–2052, doi:10.1175/1520-0469(1998)055<2039:TDASOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 24582478, doi:10.1175/1520-0469(2002)059<2458:ANPOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and A. Macke, 1998: Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission. J. Geophys. Res., 103 (D2), 17991805, doi:10.1029/97JD03121.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1991: Evolution of snow-size spectra in cyclonic storms. Part II: Deviations from the exponential form. J. Atmos. Sci., 48, 18851899, doi:10.1175/1520-0469(1991)048<1885:EOSSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2000: Parameterization of the Mie extinction and absorption coefficients for water clouds. J. Atmos. Sci., 57, 13111326, doi:10.1175/1520-0469(2000)057<1311:POTMEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2002: Effective diameter in radiation transfer: General definition, applications, and limitations. J. Atmos. Sci., 59, 2330–2346, doi:10.1175/1520-0469(2002)059<2330:EDIRTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51, 817832, doi:10.1175/1520-0469(1994)051<0817:AMPTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., Y. Liu, and A. Macke, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53, 29672988, doi:10.1175/1520-0469(1996)053<2967:MCCPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., A. J. Baran, W. P. Arnott, and C. Schmitt, 2006: Testing and comparing the modified anomalous diffraction approximation. J. Atmos. Sci., 63, 29482962, doi:10.1175/JAS3775.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., P. Rasch, D. Ivanova, G. McFarquhar, and T. Nousiainen, 2008: Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett.,35, L09806, doi:10.1029/2008GL033552.

  • Neshyba, S. P., T. C. Grenfell, and S. G. Warren, 2003: Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates. J. Geophys. Res., 108, 4448, doi:10.1029/2002JD003302.

    • Search Google Scholar
    • Export Citation
  • Neshyba, S. P., B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, 2013: Roughness metrics of prismatic facets of ice. J. Geophys. Res., 118, 33093318, doi:10.1002/jgrd.50357.

    • Search Google Scholar
    • Export Citation
  • Schlimme, I., A. Macke, and J. Reichardt, 2005: The impact of ice crystal shapes, size distributions, and spatial structures of cirrus clouds on solar radiative fluxes. J. Atmos. Sci., 62, 22742283, doi:10.1175/JAS3459.1.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W. J., and G. L. Stephens, 1991: A theoretical and observational study of the radiative properties of cirrus: Results from FIRE 1986. J. Atmos. Sci., 48, 20442059, doi:10.1175/1520-0469(1991)048<2044:ATAOSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S.-C. Tsay, J. Stackhouse, W. Paul, and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 17421754, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. M. Gabriel, and P. T. Partain, 2001: Parameterization of atmospheric radiative transfer. Part I: Validity of simple models. J. Atmos. Sci., 58, 3391–3409, doi:10.1175/1520-0469(2001)058<3391:POARTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res.,116, D21309, doi:10.1029/2011JD016298.

  • Takano, Y., and K.-N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319, doi:10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol., 46, 757–775, doi:10.1175/JAM2501.1.

    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2009: Single-scattering properties of aggregates of plates. Quart. J. Roy. Meteor. Soc., 135, 291304, doi:10.1002/qj.378.

    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1957: Light Scattering by Small Particles.Dover Publications, 480 pp.

  • van Diedenhoven, B., B. Cairns, I. V. Geogdzhayev, A. M. Fridlind, A. S. Ackerman, P. Yang, and B. A. Baum, 2012a: Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements—Part 1: Methodology and evaluation with simulated measurements. Atmos. Meas. Tech., 5, 23612374, doi:10.5194/amt-5-2361-2012.

    • Search Google Scholar
    • Export Citation
  • van Diedenhoven, B., A. M. Fridlind, A. S. Ackerman, and B. Cairns, 2012b: Evaluation of hydrometeor phase and ice properties in cloud-resolving model simulations of tropical deep convection using radiance and polarization measurements. J. Atmos. Sci., 69, 32903314, doi:10.1175/JAS-D-11-0314.1.

    • Search Google Scholar
    • Export Citation
  • van Diedenhoven, B., B. Cairns, A. M. Fridlind, A. S. Ackerman, and T. J. Garrett, 2013: Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements—Part 2: Application to the Research Scanning Polarimeter. Atmos. Chem. Phys., 13, 31853203, doi:10.5194/acp-13-3185-2013.

    • Search Google Scholar
    • Export Citation
  • Vouk, V., 1948: Projected area of convex bodies. Nature, 162, 330–331, doi:10.1038/162330a0.

  • Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23, 1206–1225, doi:10.1364/AO.23.001206.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res.,113, D14220, doi:10.1029/2007JD009744.

  • Westbrook, C. D., 2008: The fall speeds of sub-100 micron ice crystals. Quart. J. Roy. Meteor. Soc., 134, 12431251, doi:10.1002/qj.290.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. J. Hogan, and A. J. Illingworth, 2008: The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65, 206219, doi:10.1175/2007JAS2315.1.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W., and G. Grams, 1976: The backscattered fraction in two-stream approximations. J. Atmos. Sci., 33, 24402451, doi:10.1175/1520-0469(1976)033<2440:TBFITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, S. E., M. B. Baker, and D. Calhoun, 2001: New model for the vapor growth of hexagonal ice crystals in the atmosphere. J. Geophys. Res., 106, 48454870, doi:10.1029/2000JD900338.

    • Search Google Scholar
    • Export Citation
  • Wyser, K., and P. Yang, 1998: Average ice crystal size and bulk short-wave single-scattering properties of cirrus clouds. Atmos. Res., 49, 315335, doi:10.1016/S0169-8095(98)00083-0.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., P. Yang, K. Liou, P. Minnis, and D. Duda, 2012: Parameterization of contrail radiative properties for climate studies. Geophys. Res. Lett., 39, L00F02, doi:10.1029/2012GL054043.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1996: Geometric-optics integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35, 65686584, doi:10.1364/AO.35.006568.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71, 223248.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and Q. Fu, 2009: Dependence of ice crystal optical properties on particle aspect ratio. J. Quant. Spectrosc. Radiat. Transfer, 110 (14–16), 16041614, doi:10.1016/j.jqsrt.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Yang, P., K. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105 (D4), 46994718, doi:10.1029/1999JD900755.

    • Search Google Scholar
    • Export Citation
  • Yang, P., Z. Zhang, B. A. Baum, H.-L. Huang, and Y. Hu, 2004: A new look at anomalous diffraction theory (ADT): Algorithm in cumulative projected-area distribution domain and modified ADT. J. Quant. Spectrosc. Radiat. Transfer, 89 (1–4), 421442, doi:10.1016/j.jqsrt.2004.05.038.

    • Search Google Scholar
    • Export Citation
  • Yang, P., G. Kattawar, G. Hong, P. Minnis, and Y. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds—Part I: Single-scattering properties of ice crystals with surface roughness. IEEE Trans. Geosci. Remote Sens., 46, 19401947, doi:10.1109/TGRS.2008.916471.

    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 μm to 100 μm. J. Atmos. Sci., 70, 330347, doi:10.1175/JAS-D-12-039.1.

    • Search Google Scholar
    • Export Citation
  • Yi, B., P. Yang, B. A. Baum, T. L’Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K.-N. Liou, 2013: Influence of ice particle surface roughening on the global cloud radiative effect. J. Atmos. Sci., 70, 27942807, doi:10.1175/JAS-D-13-020.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 591 173 8
PDF Downloads 360 87 6