An Investigation of Warm Rainfall Microphysics in the Southern Appalachians: Orographic Enhancement via Low-Level Seeder–Feeder Interactions

Anna M. Wilson Civil and Environmental Engineering Department, Pratt School of Engineering, Duke University, Durham, North Carolina

Search for other papers by Anna M. Wilson in
Current site
Google Scholar
PubMed
Close
and
Ana P. Barros Civil and Environmental Engineering Department, Pratt School of Engineering, Duke University, Durham, North Carolina

Search for other papers by Ana P. Barros in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations of the vertical structure of rainfall, surface rain rates, and drop size distributions (DSDs) in the southern Appalachians were analyzed with a focus on the diurnal cycle of rainfall. In the inner mountain region, a 5-yr high-elevation rain gauge dataset shows that light rainfall, described here as rainfall intensity less than 3 mm h−1 over a time scale of 5 min, accounts for 30%–50% of annual accumulations. The data also reveal warm-season events characterized by heavy surface rainfall in valleys and along ridgelines inconsistent with radar observations of the vertical structure of precipitation. Next, a stochastic column model of advection–coalescence–breakup of warm rain DSDs was used to investigate three illustrative events. The integrated analysis of observations and model simulations suggests that seeder–feeder interactions (i.e., Bergeron processes) between incoming rainfall systems and local fog and/or low-level clouds with very high number concentrations of small drops (<0.2 mm) govern surface rainfall intensity through driving significant increases in coalescence rates and efficiency. Specifically, the model shows how accelerated growth of small- and moderate-size raindrops (<2 mm) via Bergeron processes can enhance surface rainfall rates by one order of magnitude for durations up to 1 h as in the observations. An examination of the fingerprints of seeder–feeder processes on DSD statistics conducted by tracking the temporal evolution of mass spectrum parameters points to the critical need for improved characterization of hydrometeor microstructure evolution, from mist formation to fog and from drizzle development to rainfall.

Corresponding author address: Ana P. Barros, Duke University, Box 90287, Room 121 Hudson Hall, Durham, NC 27708-0287. E-mail: barros@duke.edu

Abstract

Observations of the vertical structure of rainfall, surface rain rates, and drop size distributions (DSDs) in the southern Appalachians were analyzed with a focus on the diurnal cycle of rainfall. In the inner mountain region, a 5-yr high-elevation rain gauge dataset shows that light rainfall, described here as rainfall intensity less than 3 mm h−1 over a time scale of 5 min, accounts for 30%–50% of annual accumulations. The data also reveal warm-season events characterized by heavy surface rainfall in valleys and along ridgelines inconsistent with radar observations of the vertical structure of precipitation. Next, a stochastic column model of advection–coalescence–breakup of warm rain DSDs was used to investigate three illustrative events. The integrated analysis of observations and model simulations suggests that seeder–feeder interactions (i.e., Bergeron processes) between incoming rainfall systems and local fog and/or low-level clouds with very high number concentrations of small drops (<0.2 mm) govern surface rainfall intensity through driving significant increases in coalescence rates and efficiency. Specifically, the model shows how accelerated growth of small- and moderate-size raindrops (<2 mm) via Bergeron processes can enhance surface rainfall rates by one order of magnitude for durations up to 1 h as in the observations. An examination of the fingerprints of seeder–feeder processes on DSD statistics conducted by tracking the temporal evolution of mass spectrum parameters points to the critical need for improved characterization of hydrometeor microstructure evolution, from mist formation to fog and from drizzle development to rainfall.

Corresponding author address: Ana P. Barros, Duke University, Box 90287, Room 121 Hudson Hall, Durham, NC 27708-0287. E-mail: barros@duke.edu
Save
  • Alfonso, L., G. B. Raga, and D. Baumgardner, 2013: The validity of the kinetic collection equation revisited—Part 3: Sol–gel transition under turbulent conditions. Atmos. Chem. Phys., 13, 521529.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 135.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., C. W. Ulbrich, and R. Meneghini, 1984: The multiparameter remote measurement of rainfall. Radio Sci., 19, 322.

  • Barros, A. P., 2013: Orographic precipitation, freshwater resources, and climate vulnerabilities in mountainous regions. Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, R. A. Pielke Sr., Ed., Academic Press, 57–78.

  • Barros, A. P., and D. P. Lettenmaier, 1994: Dynamic modeling of orographically induced precipitation. Rev. Geophys., 32, 265284.

  • Barros, A. P., O. P. Prat, P. Shrestha, F. Y. Testik, and L. F. Bliven, 2008: Revisiting Low and List (1982): Evaluation of raindrop collision parameterizations using laboratory observations and modeling. J. Atmos. Sci., 65, 29832993.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Bendix, J., B. Thies, J. Cermak, and T. Nauß, 2005: Ground fog detection from space based on MODIS daytime data—A feasibility study. Wea. Forecasting, 20, 9891005.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1960: Problems and methods of rainfall investigation, address of the honorary chairman of the conference. Physics of Precipitation, Geophys. Monogr., Vol. 5, Amer. Geophys. Union, 152–157.

  • Braten, L. E., J. Sander, and T. M. Mjelde, 2013: Satellite-Earth K-band beacon measurements at Kjeller, Norway. Proc. Seventh European Conf. on Antennas and Propagation (EuCAP), Gothenburg, Sweden, IEEE, 47–51.

  • Bruijnzeel, L. A., M. Mulligan, and F. N. Scatena, 2011: Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrol. Processes, 25, 465498.

    • Search Google Scholar
    • Export Citation
  • Cho, H., K. P. Bowman, and G. R. North, 2004: A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the Tropical Rainfall Measuring Mission. J. Appl. Meteor., 43, 15861597.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 880 pp.

  • Duan, Y., and A. P. Barros, cited 2013: Satellite remote sensing of precipitation in complex terrain—Analysis of TRMM PR V7 rainfall estimates in the southern Appalachians. [Available online at http://iphex.pratt.duke.edu/documents.]

  • Eldridge, R. G., 1960: A few fog drop-size distributions. J. Meteor., 18, 671676.

  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851.

    • Search Google Scholar
    • Export Citation
  • Frumau, K. F. A., R. Burkard, S. Schmid, L. A. Bruijnzeel, C. Tobón, and J. C. Calvo-Alvarado, 2011: A comparison of the performance of three types of passive fog gauges under conditions of wind-driven fog and precipitation. Hydrol. Processes, 25, 374383.

    • Search Google Scholar
    • Export Citation
  • García-García, F., U. Virafuentes, and G. Montero-Martínez, 2002: Fine-scale measurements of fog-droplet concentrations: A preliminary assessment. Atmos. Res., 64, 179189.

    • Search Google Scholar
    • Export Citation
  • Gonser, S. G., O. Klemm, F. Griessbaum, S. C. Chang, H. S. Chu, and Y. J. Hsia, 2012: The relation between humidity and liquid water content in fog: An experimental approach. Pure Appl. Geophys., 169, 821833.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2009: The fog remote sensing and modeling field project. Bull. Amer. Meteor. Soc., 90, 341359.

  • Haddad, Z. S., S. L. Durden, and E. Im, 1996: Parameterizing the raindrop size distribution. J. Appl. Meteor., 35, 313.

  • Hering, S. V., D. L. Blumenthal, R. L. Brewer, A. Gertler, M. Hoffmann, J. A. Kadlecek, and K. Pettus, 1987: Field intercomparison of five types of fogwater collectors. Environ. Sci. Technol., 21, 654663.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and S. Q. Zhang, 2007: Assimilation of precipitation information using column model physics as a weak constraint. J. Atmos. Sci., 64, 38653879.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., S. Q. Zhang, A. M. da Silva, W. S. Olson, C. D. Kummerow, and J. Simpson, 2001: Improving global analysis and short-range forecast using rainfall and moisture observations derived from TRMM and SSM/I passive microwave sensors. Bull. Amer. Meteor. Soc., 82, 659679.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052.

    • Search Google Scholar
    • Export Citation
  • Klemm, O., and Coauthors, 2012: Fog as a fresh-water resource: Overview and perspectives. Ambio, 41, 221234.

  • Kostinski, A. B., and R. A. Shaw, 2005: Fluctuations and luck in droplet growth by coalescence. Bull. Amer. Meteor. Soc., 86, 235244.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., and D. Ramkrishna, 1996: On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem. Eng. Sci., 51, 13111332.

    • Search Google Scholar
    • Export Citation
  • Kunkel, B. A., 1982: Microphysical properties of fog at Otis AFB. Air Force Geophysics Laboratory Rep. AFGL-TR-82-0026, AD A119928, 113 pp.

  • Lanza, L. G., E. Vuerich, and I. Gnecco, 2010: Analysis of highly accurate rain intensity measurements from a field test site. Adv. Geosci., 25, 3744.

    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982a: Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 15911606.

    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982b: Collision, coalescence and breakup of raindrops. Part II: Parameterization of fragment size distributions. J. Atmos. Sci.,39, 1607–1619.

  • Mallet, C., and L. Barthes, 2009: Estimation of gamma raindrop size distribution parameters: Statistical fluctuations and estimation errors. J. Atmos. Oceanic Technol., 26, 15721584.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166.

  • McFarquhar, G. M., 2004: A new representation of collision-induced breakup of raindrops and its implications for the shape of raindrop size distributions. J. Atmos. Sci., 61, 777794.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, J. D., and R. List, 1975: Collision and breakup of water drops at terminal velocity. J. Atmos. Sci., 32, 14011411.

  • METEK, 2012: MRR physical basics, version 5.2.0.9. Meteorologische Messtechnik GmbH Rep., 20 pp.

  • Müller, M. D., M. Masbou, and A. Bott, 2010: Three-dimensional fog forecasting in complex terrain. Quart. J. Roy. Meteor. Soc., 136, 21892202.

    • Search Google Scholar
    • Export Citation
  • Okuda, T., K. Tomine, and F. Kobayashi, 2008: Visibility and fog drop size spectra at Misawa Air Base. J. Meteor. Soc. Japan, 86, 901917.

    • Search Google Scholar
    • Export Citation
  • Okuda, T., K. Tomine, and H. Sugawara, 2009: Direct photographic method for measuring droplet size distribution in fog. SOLA, 5, 1316.

    • Search Google Scholar
    • Export Citation
  • Pinnick, R. G., D. L. Hoihjelle, G. Fernandez, E. B. Stenmark, J. D. Lindberg, and G. B. Hoidale, 1978: Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction. J. Atmos. Sci., 35, 20202032.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and M. Shapiro, 1999: Collisions of small drops in a turbulent flow. Part I: Collision efficiency. Problem formulation and preliminary results. J. Atmos. Sci., 56, 25852600.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and M. Shapiro, 2000: Stochastic effects on cloud droplet hydrodynamic interaction in a turbulent flow. Atmos. Res., 53, 131169.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and M. Shapiro, 2007: Collisions of cloud droplets in a turbulent flow. Part IV: Droplet hydrodynamic interaction. J. Atmos. Sci., 64, 24622482.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and M. Shapiro, 2008: Collisions of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci., 65, 357374.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2007: A robust numerical solution of the stochastic collection–breakup equation for warm rain. J. Appl. Meteor. Climatol., 46, 14801497.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2009: Exploring the transient behavior of Z–R relationships: Implications for radar rainfall estimation. J. Appl. Meteor. Climatol., 48, 21272143.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2010a: Assessing satellite-based precipitation estimates in the southern Appalachian Mountains using rain gauges and TRMM PR. Adv. Geosci., 25, 143153.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2010b: Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation—Experiments in the inner region of the Great Smoky Mountains. J. Hydrol., 391, 141156.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and C. R. Williams, 2008: An intercomparison of model simulations and VPR estimates of the vertical structure of warm stratiform rainfall during TWP-ICE. J. Appl. Meteor. Climatol., 47, 27972815.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and F. Y. Testik, 2012: On the influence of raindrop collision outcomes on equilibrium drop size distributions. J. Atmos. Sci., 69, 15341546.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. Springer, 714 pp.

  • Raghavan, S., 2003: Radar Meteorology. Kluwer Academic Publishers, 549 pp.

  • Rennó, N. O., and Coauthors, 2013: CHASER: An innovative satellite mission concept to measure the effects of aerosols on clouds and climate. Bull. Amer. Meteor. Soc., 94, 685694.

    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement Mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 5239–5251, doi:10.1109/TGRS.2012.2231686.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1978: Parameterization of raindrop size distributions. J. Atmos. Sci., 35, 108117.

  • Straub, D. J., and J. L. Collett Jr., 2002: Development of a multi-stage cloud water collector Part 2: Numerical and experimental calibration. Atmos. Environ., 36, 4556.

    • Search Google Scholar
    • Export Citation
  • Straub, W., K. D. Beheng, A. Seifet, J. Schlottke, and B. Weigand, 2010: Numerical investigation of collision-induced breakup of raindrops. Part II: Parameterizations of coalescence efficiencies and fragment size distributions. J. Atmos. Sci., 67, 576588.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., A. Y. Hou, M. de Castro, R. Checa, F. Cuartero, and A. P. Barros, 2011: Precipitation estimates for hydroelectricity. Energy Environ. Sci., 4, 44354448.

    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., and A. P. Barros, 2007: Toward elucidating the microstructure of warm rainfall: A survey. Rev. Geophys., 45, Z57Z77.

  • Testik, F. Y., A. P. Barros, and L. Bliven, 2011: Toward a physical characterization of raindrop collision outcome regimes. J. Atmos. Sci., 68, 10971113.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. Hartmann, A. Battaglia, K. S. Gage, W. L. Clark, and C. R. Williams, 2009: A field study of reflectivity and ZR relations using vertically pointing radars and disdrometers. J. Atmos. Oceanic Technol., 26, 11201134.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., W. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 1672–1690.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., and J. N. M. Stricker, 1999: A consistent rainfall parameterization based on the exponential raindrop size distribution. J. Hydrol., 218, 101127.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • Walmsley, J. L., R. S. Schemenauer, and H. A. Bridgman, 1996: A method for estimating the hydrologic input from fog in mountainous terrain. J. Appl. Meteor., 35, 22372249.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol.,in press.

  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization. J. Atmos. Sci., 41, 16481661.

  • Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: statistical error or useful information? J. Atmos. Oceanic Technol., 20, 11061119.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 559 175 11
PDF Downloads 456 131 6