Vertical Velocity and Physical Structure of Generating Cells and Convection in the Comma Head Region of Continental Winter Cyclones

Andrew A. Rosenow Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Andrew A. Rosenow in
Current site
Google Scholar
PubMed
Close
,
David M. Plummer Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by David M. Plummer in
Current site
Google Scholar
PubMed
Close
,
Robert M. Rauber Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
,
Greg M. McFarquhar Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Greg M. McFarquhar in
Current site
Google Scholar
PubMed
Close
,
Brian F. Jewett Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Brian F. Jewett in
Current site
Google Scholar
PubMed
Close
, and
David Leon Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by David Leon in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The vertical motion and physical structure of elevated convection and generating cells within the comma heads of three continental winter cyclones are investigated using the Wyoming W-band cloud radar mounted on the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) C-130, supplemented by analyses from the Rapid Update Cycle model and Weather Surveillance Radar-1988 Doppler (WSR-88D) data. The cyclones followed three distinct archetypical tracks and were typical of those producing winter weather in the midwestern United States. In two of the cyclones, dry air in the middle and upper troposphere behind the Pacific cold front intruded over moist Gulf of Mexico air at lower altitudes within the comma head, separating the comma head into two zones. Elevated convection in the southern zone extended from the cold-frontal surface to the tropopause. The stronger convective updrafts ranged from 2 to 7 m s−1 and downdrafts ranged from −2 to −6 m s−1. The horizontal scale of the convective cells was approximately 5 km. The poleward zone of the comma head was characterized by deep stratiform clouds topped by cloud-top generating cells that reached the tropopause. Updrafts and downdrafts within the generating cells ranged from 1 to 2 m s−1, with the horizontal scale of the cells from about 1 to 2 km. Precipitation on the poleward side of the comma head conformed to a seeder–feeder process—the generating cells seeding the stratiform cloud—which was forced by synoptic-scale ascent. In one case, shallow clouds behind the cyclone’s cold front were also topped by cloud-top generating cells, with vertical motions ranging from 1 to 2 m s−1.

Corresponding author address: Andrew A. Rosenow, Department of Atmospheric Sciences, 105 S. Gregory Street, Urbana, IL 61801. E-mail: rosenow1@illinois.edu

Abstract

The vertical motion and physical structure of elevated convection and generating cells within the comma heads of three continental winter cyclones are investigated using the Wyoming W-band cloud radar mounted on the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) C-130, supplemented by analyses from the Rapid Update Cycle model and Weather Surveillance Radar-1988 Doppler (WSR-88D) data. The cyclones followed three distinct archetypical tracks and were typical of those producing winter weather in the midwestern United States. In two of the cyclones, dry air in the middle and upper troposphere behind the Pacific cold front intruded over moist Gulf of Mexico air at lower altitudes within the comma head, separating the comma head into two zones. Elevated convection in the southern zone extended from the cold-frontal surface to the tropopause. The stronger convective updrafts ranged from 2 to 7 m s−1 and downdrafts ranged from −2 to −6 m s−1. The horizontal scale of the convective cells was approximately 5 km. The poleward zone of the comma head was characterized by deep stratiform clouds topped by cloud-top generating cells that reached the tropopause. Updrafts and downdrafts within the generating cells ranged from 1 to 2 m s−1, with the horizontal scale of the cells from about 1 to 2 km. Precipitation on the poleward side of the comma head conformed to a seeder–feeder process—the generating cells seeding the stratiform cloud—which was forced by synoptic-scale ascent. In one case, shallow clouds behind the cyclone’s cold front were also topped by cloud-top generating cells, with vertical motions ranging from 1 to 2 m s−1.

Corresponding author address: Andrew A. Rosenow, Department of Atmospheric Sciences, 105 S. Gregory Street, Urbana, IL 61801. E-mail: rosenow1@illinois.edu
Save
  • American Meteorological Society, cited 2013a: Alberta clipper. Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/Alberta_clipper.]

  • American Meteorological Society, cited 2013b: Generating cell. Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/generating_cell.]

  • Benjamin, S. G., B. D. Jamison, W. R. Moninger, S. R. Sahm, B. E. Schwartz, and T. W. Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 13191343, doi:10.1175/2009MWR3097.1.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1950: Über der mechanismus der ausgeibigen Niederschläge. Ber. Dtsch. Wettterdienstes, 12, 225232.

  • Brown, S. R., 1970: Terminal velocities of ice crystals. Colorado State University Atmospheric Science Paper 170, 60 pp.

  • Browning, K. A., 1983: Air motion and precipitation growth in a major snowstorm. Quart. J. Roy. Meteor. Soc., 109, 225242, doi:10.1002/qj.49710945911.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2005: Observational synthesis of mesoscale structures within an explosively developing cyclone. Quart. J. Roy. Meteor. Soc., 131, 603623, doi:10.1256/qj.03.201.

    • Search Google Scholar
    • Export Citation
  • Carbone, R., and A. R. Bohne, 1975: Cellular snow generation—A Doppler radar study. J. Atmos. Sci., 32, 13841394, doi:10.1175/1520-0469(1975)032<1384:CSGDRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cronce, M., R. M. Rauber, K. R. Knupp, B. F. Jewett, J. T. Walters, and D. Phillips, 2007: Vertical motions in precipitation bands in three winter cyclones. J. Appl. Meteor. Climatol., 46, 15231543, doi:10.1175/JAM2533.1.

    • Search Google Scholar
    • Export Citation
  • Cunningham, J. G. and S. E. Yuter, 2014: Instability characteristics of radar-derived mesoscale organization modes within cool-season precipitation near Portland, Oregon. Mon. Wea. Rev.,in press.

  • Davis, C. I., 1974: The ice nucleating characteristics of various AgI aerosols. Ph.D. dissertation, University of Wyoming, 267 pp.

  • Douglas, R. H., K. L. S. Gunn, and J. S. Marshall, 1957: Pattern in the vertical of snow generation. J. Meteor., 14, 95114, doi:10.1175/1520-0469(1957)014<0095:PITVOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Grim, J. A., R. M. Rauber, M. K. Ramamurthy, B. F. Jewett, and M. Han, 2007: High resolution observations of the trowal–warm-frontal region of two continental winter cyclones. Mon. Wea. Rev., 135, 16291646, doi:10.1175/MWR3378.1.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., M. P. Langleben, A. S. Dennis, and B. A. Power, 1954: Radar evidence of a generating level for snow. J. Meteor., 11, 2026, doi:10.1175/1520-0469(1954)011<0020:REOAGL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, M., R. M. Rauber, M. K. Ramamurthy, B. F. Jewett, and J. A. Grim, 2007: Mesoscale dynamics of the trowal and warm-frontal regions of two continental winter cyclones. Mon. Wea. Rev., 135, 16471670, doi:10.1175/MWR3377.1.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and P. V. Hobbs, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II: Warm frontal clouds. J. Atmos. Sci., 37, 597611, doi:10.1175/1520-0469(1980)037<0597:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and J. D. Locatelli, 1978: Rainbands, precipitation cores and generating cells in a cyclonic storm. J. Atmos. Sci., 35, 230241.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. A. Rutledge, T. J. Matejka, and P. V. Hobbs, 1981: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. III: Air motions and precipitation growth in a warm-frontal rainband. J. Atmos. Sci., 38, 639649, doi:10.1175/1520-0469(1981)038<0639:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1972: Measurement of falling velocity of individual snow crystals. J. Meteor. Soc. Japan, 50, 577584.

  • Langleben, M. P., 1956: The plan pattern of snow echoes at the generating level. J. Meteor., 13, 554560, doi:10.1175/1520-0469(1956)013<0554:TPPOSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leon, D., G. Vali, and M. Lothon, 2006: Dual-Doppler analysis in a single plane from an airborne platform. J. Atmos. Oceanic Technol., 23, 322, doi:10.1175/JTECH1820.1.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., 1953: Precipitation trajectories and patterns. J. Atmos. Sci., 10, 2529.

  • Martin, J. E., 1998b: The structure and evolution of a continental winter cyclone. Part II: Frontal forcing of an extreme snow event. Mon. Wea. Rev., 126, 329348, doi:10.1175/1520-0493(1998)126<0329:TSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicosia, D. J., and R. H. Grumm, 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346368, doi:10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456, doi:10.1175/2007MWR2233.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and R. McTaggart-Cowan, 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 137, 26622686, doi:10.1175/2009MWR2874.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band environments within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374, doi:10.1175/2010MWR3219.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2014: Stability and charging characteristics of the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 226237, doi:10.1175/1520-0469(1955)012<0226:ASOACT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and F. Sanders, 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338349, doi:10.1175/1520-0469(1953)010<0338:AIOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sienkiewicz, J. M., J. D. Locatelli, P. V. Hobbs, and B. Geerts, 1989: Organization and structure of clouds and precipitation on the mid-Atlantic coast of the United States. Part II: The mesoscale and microscale structures of some frontal rainbands. J. Atmos. Sci., 46, 13491364, doi:10.1175/1520-0469(1989)046<1349:OASOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stark, D., B. A. Colle, and S. E. Yuter, 2013: Observed microphysical evolution for two east coast winter storms and the associated snow bands. Mon. Wea. Rev., 141, 20372057, doi:10.1175/MWR-D-12-00276.1.

    • Search Google Scholar
    • Export Citation
  • Syrett, W. J., B. A. Albrecht, and E. E. Clothiaux, 1995: Vertical cloud structure in a midlatitude cyclone from a 94-GHz radar. Mon. Wea. Rev., 123, 33933407, doi:10.1175/1520-0493(1995)123<3393:VCSIAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Wexler, R., 1955: Radar analysis of precipitation streamers observed 25 February 1954. J. Atmos. Sci., 12, 391393.

  • Wexler, R., and D. Atlas, 1959: Precipitation generating cells. J. Atmos. Sci., 16, 327332.

  • Wiesmueller, J. L., and S. M. Zubrick, 1998: Evaluation and application of conditional symmetric instability, equivalent potential vorticity, and frontogenetic forcing in an operational forecast environment. Wea. Forecasting, 13, 84101, doi:10.1175/1520-0434(1998)013<0084:EAAOCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, doi:10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1468 582 290
PDF Downloads 729 139 11