Observations of Temperature in the Upper Troposphere and Lower Stratosphere of Tropical Weather Disturbances

Christopher A. Davis National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Christopher A. Davis in
Current site
Google Scholar
PubMed
Close
,
David A. Ahijevych National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by David A. Ahijevych in
Current site
Google Scholar
PubMed
Close
,
Julie A. Haggerty National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Julie A. Haggerty in
Current site
Google Scholar
PubMed
Close
, and
Michael J. Mahoney Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Michael J. Mahoney in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Microwave temperature profiler (MTP) data are analyzed to document temperature signatures in the upper troposphere and lower stratosphere that accompany Atlantic tropical weather disturbances. The MTP was deployed on the National Science Foundation–National Center for Atmospheric Research Gulfstream V (GV) aircraft during the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) in August and September 2010.

Temporal variations in cold-point temperature compared with infrared cloud-top temperature reveal that organized deep convection penetrated to near or beyond the cold point for each of the four disturbances that developed into a tropical cyclone. Relative to the lower-tropospheric circulation center, MTP and dropsonde data confirmed a stronger negative radial gradient of temperature in the upper troposphere (10–13 km) of developing disturbances prior to genesis compared with nondeveloping disturbances. The MTP data revealed a somewhat higher and shallower area of relative warmth near the center when compared with dropsonde data. MTP profiles through anvil cloud depicted cooling near 15 km and warming in the lower stratosphere near the time of maximum coverage of anvil clouds shortly after sunrise. Warming occurred through a deep layer of the upper troposphere toward local noon, presumably associated with radiative heating in cloud. The temperature signatures of anvil cloud above 10-km altitude contributed to the radial gradient of temperature because of the clustering of deep convection near the center of circulation. However, it is concluded that these signatures may be more a result of properties of convection than a direct distinguishing factor of genesis.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Christopher A. Davis, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: cdavis@ucar.edu

Abstract

Microwave temperature profiler (MTP) data are analyzed to document temperature signatures in the upper troposphere and lower stratosphere that accompany Atlantic tropical weather disturbances. The MTP was deployed on the National Science Foundation–National Center for Atmospheric Research Gulfstream V (GV) aircraft during the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) in August and September 2010.

Temporal variations in cold-point temperature compared with infrared cloud-top temperature reveal that organized deep convection penetrated to near or beyond the cold point for each of the four disturbances that developed into a tropical cyclone. Relative to the lower-tropospheric circulation center, MTP and dropsonde data confirmed a stronger negative radial gradient of temperature in the upper troposphere (10–13 km) of developing disturbances prior to genesis compared with nondeveloping disturbances. The MTP data revealed a somewhat higher and shallower area of relative warmth near the center when compared with dropsonde data. MTP profiles through anvil cloud depicted cooling near 15 km and warming in the lower stratosphere near the time of maximum coverage of anvil clouds shortly after sunrise. Warming occurred through a deep layer of the upper troposphere toward local noon, presumably associated with radiative heating in cloud. The temperature signatures of anvil cloud above 10-km altitude contributed to the radial gradient of temperature because of the clustering of deep convection near the center of circulation. However, it is concluded that these signatures may be more a result of properties of convection than a direct distinguishing factor of genesis.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Christopher A. Davis, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: cdavis@ucar.edu
Save
  • Alexander, S. P., and T. Tsuda, 2008: High-resolution radio acoustic sounding system observations and analysis up to 20 km. J. Atmos. Oceanic Technol.,25, 1383–1396, doi:10.1175/2007JTECHA983.1.

  • Anthes, R. A., C. Rocken, and Y. H. Kuo, 2000: Applications of COSMIC to meteorology and climate. Terr., Atmos. Oceanic Sci., 11, 115156.

    • Search Google Scholar
    • Export Citation
  • Bessho, K., T. Nakazawa, S. Nishimura, and K. Kato, 2010: Warm core structures in organized cloud clusters developing or not developing into tropical storms observed by the Advanced Microwave Sounding Unit. Mon. Wea. Rev., 138, 26242643, doi:10.1175/2010MWR3073.1.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., II, and E. S. Blake, 2014: The Atlantic hurricane season of 2010. Mon. Wea. Rev., doi:10.1175/MWR-D-11-00264.1, in press.

  • Biondi, R., W. J. Randel, S.-P. Ho, T. Neubert, and S. Syndergaard, 2012: Thermal structure of intense convective clouds derived from GPS radio occultations. Atmos. Chem. Phys., 12, 53095318, doi:10.5194/acp-12-5309-2012.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and B. E. Mapes, 2004: Effect of vertical dipole temperature anomalies on convection in a cloud model. J. Atmos. Sci., 61, 20922100, doi:10.1175/1520-0469(2004)061<2092:EOVDTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Borbas, E. E., W. P. Menzel, E. Weisz, and D. Devenyi, 2008: Deriving atmospheric temperature of the tropopause region–upper troposphere by combining information from GPS radio occultation refractivity and high-spectral-resolution infrared radiance measurements. J. Appl. Meteor. Climatol.,47, 23002310, doi:10.1175/2008JAMC1687.1.

  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2014: Influence of cloud-radiative forcing on tropical cyclone structure. J. Atmos. Sci.,doi:10.1175/JAS-D-13-0265.1, in press.

  • Danielsen, E. F., 1993: In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones. J. Geophys. Res., 98 (D5), 86658681, doi:10.1029/92JD02954.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, doi:10.1175/JAS-D-11-0225.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2013: Thermodynamic environments of deep convection in Atlantic tropical disturbances. J. Atmos. Sci., 70, 19121928, doi:10.1175/JAS-D-12-0278.1.

    • Search Google Scholar
    • Export Citation
  • Denning, R. F., S. L. Guidero, G. S. Parks, and B. L. Gary, 1989: Instrument description of the airborne microwave temperature profiler. J. Geophys. Res., 94, 16 75716 765, doi:10.1029/JD094iD14p16757.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, doi:10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo, 2013: Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Climate, 26, 22882301, doi:10.1175/JCLI-D-12-00242.1.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Gary, B. L., 2006: Mesoscale temperature fluctuations in the stratosphere. Atmos. Chem. Phys., 6, 45774589, doi:10.5194/acp-6-4577-2006.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., C. H. Twohy, B. Gandrud, A. J. Heymsfield, G. M. McFarquhar, P. J. DeMott, and D. C. Rogers, 1998: Measurements of wave-cloud microphysical properties with two new aircraft probes. Geophys. Res. Lett., 25, 11171120, doi:10.1029/97GL03310.

    • Search Google Scholar
    • Export Citation
  • Griffin, K. S., 2012: Large-scale influences on the pre-genesis of tropical cyclone Karl (2010). M.S. thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 108 pp.

  • Hamada, A., and N. Nishi, 2010: Development of a cloud-top height estimation method by geostationary satellite split-window measurements trained with CloudSat data. J. Appl. Meteor. Climatol., 49, 20352049, doi:10.1175/2010JAMC2287.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Z. Wang, and S. Matrosov, 2005: Improved radar ice water content retrieval algorithms using coincident microphysical and radar measurements. J. Appl. Meteor., 44, 13911412, doi:10.1175/JAM2282.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64, 14671487, doi:10.1175/JAS3907.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, doi:10.1175/2009MWR2989.1.

  • Houze, R. A., and C.-P. Cheng, 1981: Inclusion of mesoscale updrafts and downdrafts in computations of vertical fluxes by ensembles of tropical clouds. J. Atmos. Sci., 38, 17511770, doi:10.1175/1520-0469(1981)038<1751:IOMUAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys.,47, RG2003, doi:10.1029/2008RG000266.

  • Kim, J., and S.-W. Son, 2012: Tropical cold-point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements. J. Climate, 25, 53435360, doi:10.1175/JCLI-D-11-00554.1.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., 2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci., 70, 542558, doi:10.1175/JAS-D-12-052.1.

    • Search Google Scholar
    • Export Citation
  • Lim, B., M. J. Mahoney, J. Haggerty, and R. Denning, 2013: The microwave temperture profiler performance in recent field campaigns. Proc. Int. Geoscience and Remote Sensing Symp., Melbourne, Australia, IEEE, 33633366.

    • Search Google Scholar
    • Export Citation
  • Lin, L., X. Zou, R. Anthes, and Y.-H. Kuo, 2010: COSMIC GPS radio occultation temperature profiles in clouds. Mon. Wea. Rev., 138, 11041118, doi:10.1175/2009MWR2986.1.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199, doi:10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part I: Basic description of data sets. J. Atmos. Sci., 38, 11171131, doi:10.1175/1520-0469(1981)038<1117:OAOTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools and some first results. Bull. Amer. Meteor. Soc., 93, 153172, doi:10.1175/BAMS-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., and Coauthors, 2008: Multisensor estimation of mixing heights over a coastal city. J. Appl. Meteor. Climatol, 47, 2743, doi:10.1175/2007JAMC1503.1.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci.,6, 169–176, doi:10.1038/ngeo1733.

  • Randel, W. J., F. Wu, and W. R. Rios, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res.,108, 4024, doi:10.1029/2002JD002595.

  • Raymond, D. J., and S. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, doi:10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 2000: A stratospheric “drain” over the maritime continent. Geophys. Res. Lett., 27, 677680, doi:10.1029/1999GL010868.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and R. Wahrlich, 1999: Observed evolution of tropical deep convective events and their environment. Mon. Wea. Rev., 127, 17771795, doi:10.1175/1520-0493(1999)127<1777:OEOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., T. Horinouchi, and H. A. Zeleznik, 2003: Convective impact on temperatures observed near the tropical tropopause. J. Atmos. Sci., 60, 18471856, doi:10.1175/1520-0469(2003)060<1847:CIOTON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., 2012: Tropical outgoing longwave radiation and longwave cloud forcing diurnal cycles from CERES. J. Atmos. Sci., 69, 36523669, doi:10.1175/JAS-D-12-088.1.

    • Search Google Scholar
    • Export Citation
  • Teitelbaum, H., M. Moustaoui, C. Basdevant, and J. R. Holton, 2000: An alternative mechanism explaining the hygropause formation in tropical regions. Geophys. Res. Lett., 27, 221224, doi:10.1029/1999GL010874.

    • Search Google Scholar
    • Export Citation
  • Tsakraklides, G., and J. L. Evans, 2003: Global and regional diurnal variations of organized convection. J. Climate, 16, 15621572, doi:10.1175/1520-0442-16.10.1562.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and C. J. Schreck, 2012: Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon. Wea. Rev., 140, 21982214, doi:10.1175/MWR-D-11-00305.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and C. Fritz, 2012: A first look at the structure of the wave pouch during the 2009 PREDICT–GRIP dry runs over the Atlantic. Mon. Wea. Rev., 140, 11441163, doi:10.1175/MWR-D-10-05063.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, doi:10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and H. M. Woolf, 2002: The diurnal cycle of upper-tropospheric clouds measured by GOES-VAS and the ISCCP. Mon. Wea. Rev., 130, 171179, doi:10.1175/1520-0493(2002)130<0171:TDCOUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zawislak, J., and E. J. Zipser, 2013: Analysis of the thermodynamic properties of developing and nondeveloping tropical disturbances using a comprehensive dropsonde dataset. Mon. Wea. Rev., 142, 12501264, doi:10.1175/MWR-D-13-00253.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and J. R. Holton, 2002: Intraseasonal variations of tropical cold-point tropopause temperatures. J. Climate, 15, 14601473, doi:10.1175/1520-0442(2002)015<1460:IVOTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 751 362 153
PDF Downloads 204 37 1