Numerical Simulations of Sheared Conditionally Unstable Flows over a Mountain Ridge

Mario Marcello Miglietta ISAC-CNR, Lecce, Italy

Search for other papers by Mario Marcello Miglietta in
Current site
Google Scholar
PubMed
Close
and
Richard Rotunno NCAR,* Boulder, Colorado

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In two recent papers, the authors performed numerical simulations with a three-dimensional, explicitly cloud-resolving model for a uniform wind flowing past a bell-shaped ridge and using an idealized unstable (Weisman–Klemp) sounding with prescribed values of the relevant parameters. More recently, some observed cases of orographically forced wind profiles were analyzed, showing that, in order to reproduce larger rainfall rates, it was necessary to initialize the sounding with low-level flow toward the mountain with weak flow aloft (as observed). Additional experiments using the Weisman–Klemp sounding, but with nonuniform wind profiles, are performed here to identify the conditions in which the presence of a low-level cross-mountain flow together with calm flow aloft may increase the rain rates in conditionally unstable flows over the orography. The sensitivity of the solutions to the wind speed at the bottom and the top of a shear layer and the effect of different mountain widths and heights are systematically analyzed herein.

Large rainfall rates are obtained when the cold pool, caused by the evaporative cooling of rain from precipitating convective clouds, remains quasi stationary upstream of the mountain peak. This condition occurs when the cold-pool propagation is approximately countered by the environmental wind. The large precipitation amounts can be attributed to weak upper-level flow, which favors stronger updrafts and upright convective cells, and to the ground-relative stationarity of the cells. This solution feature is produced with ambient wind shear within a narrow region of the parameter space explored here and does not occur in the numerical solutions obtained in the authors’ previous studies with uniform wind profiles.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Mario Marcello Miglietta, CNR-ISAC, Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy. E-mail: m.miglietta@isac.cnr.it

Abstract

In two recent papers, the authors performed numerical simulations with a three-dimensional, explicitly cloud-resolving model for a uniform wind flowing past a bell-shaped ridge and using an idealized unstable (Weisman–Klemp) sounding with prescribed values of the relevant parameters. More recently, some observed cases of orographically forced wind profiles were analyzed, showing that, in order to reproduce larger rainfall rates, it was necessary to initialize the sounding with low-level flow toward the mountain with weak flow aloft (as observed). Additional experiments using the Weisman–Klemp sounding, but with nonuniform wind profiles, are performed here to identify the conditions in which the presence of a low-level cross-mountain flow together with calm flow aloft may increase the rain rates in conditionally unstable flows over the orography. The sensitivity of the solutions to the wind speed at the bottom and the top of a shear layer and the effect of different mountain widths and heights are systematically analyzed herein.

Large rainfall rates are obtained when the cold pool, caused by the evaporative cooling of rain from precipitating convective clouds, remains quasi stationary upstream of the mountain peak. This condition occurs when the cold-pool propagation is approximately countered by the environmental wind. The large precipitation amounts can be attributed to weak upper-level flow, which favors stronger updrafts and upright convective cells, and to the ground-relative stationarity of the cells. This solution feature is produced with ambient wind shear within a narrow region of the parameter space explored here and does not occur in the numerical solutions obtained in the authors’ previous studies with uniform wind profiles.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Mario Marcello Miglietta, CNR-ISAC, Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy. E-mail: m.miglietta@isac.cnr.it
Save
  • Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209248, doi:10.1017/S0022112068000133.

  • Bousquet, O., and B. F. Smull, 2003: Airflow and precipitation fields within deep alpine valleys observed by airborne Doppler radar. J. Appl. Meteor., 42, 14971513, doi:10.1175/1520-0450(2003)042<1497:AAPFWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942415, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Knievel, and M. D. Parker, 2006: A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134, 27722792, doi:10.1175/MWR3226.1.

    • Search Google Scholar
    • Export Citation
  • Buzzi, A., and L. Foschini, 2000: Mesoscale meteorological features associated with heavy precipitation in the southern Alpine region. Meteor. Atmos. Phys., 72, 131146, doi:10.1007/s007030050011.

    • Search Google Scholar
    • Export Citation
  • Caracena, F. R., A. Maddox, L. R. Hoxit, and C. F. Chappell, 1979: Meso-analysis of the Big Thompson storm. Mon. Wea. Rev., 107, 117, doi:10.1175/1520-0493(1979)107<0001:MOTBTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and W.-C. Lee, 2012: Mesoscale analysis of heavy rainfall episodes from SoWMEX/TiMREX. J. Atmos. Sci., 69, 521537, doi:10.1175/JAS-D-11-0120.1.

    • Search Google Scholar
    • Export Citation
  • Davolio, S., A. Buzzi, and P. Malguzzi, 2009: Orographic triggering of long-lived convection in three dimensions. Meteor. Atmos. Phys., 103, 3544, doi:10.1007/s00703-008-0332-5.

    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., O. Nuissier, D. Ricard, C. Lebeaupin, and T. Thouvenin, 2008: A numerical study of three catastrophic precipitating events over western Mediterranean region (southern France). Part II: Mesoscale triggering and stationarity factors. Quart. J. Roy. Meteor. Soc., 134, 131145, doi:10.1002/qj.199.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 1991: Influence of the Coriolis force on two-dimensional model storms. Mon. Wea. Rev., 119, 606630, doi:10.1175/1520-0493(1991)119<0606:IOTCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fuhrer, O., and C. Schär, 2005: Embedded cellular convection in moist flow past topography. J. Atmos. Sci., 62, 28102828, doi:10.1175/JAS3512.1.

    • Search Google Scholar
    • Export Citation
  • Fuhrer, O., and C. Schär, 2007: Dynamics of orographically triggered banded convection in sheared moist orographic flows. J. Atmos. Sci., 64, 35423561, doi:10.1175/JAS4024.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623, doi:10.1175/JAS3555.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2005a: Atmospheric factors governing banded orographic convection. J. Atmos. Sci., 62, 37583774, doi:10.1175/JAS3568.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2005b: Observations and modeling of banded orographic convection. J. Atmos. Sci., 62, 14631479, doi:10.1175/JAS3417.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. K. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320339, doi:10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., R. Rotunno, and W. C. Skamarock, 1994: On the dynamics of gravity currents in a channel. J. Fluid Mech., 269, 169198, doi:10.1017/S0022112094001527.

    • Search Google Scholar
    • Export Citation
  • Kodama, K., and G. M. Barnes, 1997: Heavy rain events over the south-facing slopes of Hawaii: Attendant conditions. Wea. Forecasting, 12, 347367, doi:10.1175/1520-0434(1997)012<0347:HREOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S. Chao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660, doi:10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and R. Rotunno, 2009: Numerical simulations of conditionally unstable flows over a ridge. J. Atmos. Sci., 66, 18651885, doi:10.1175/2009JAS2902.1.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and R. Rotunno, 2010: Numerical simulations of low-CAPE flows over a mountain ridge. J. Atmos. Sci., 67, 23912401, doi:10.1175/2010JAS3378.1.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and R. Rotunno, 2012: Application of theory to observed cases of orographically forced convective rainfall. Mon. Wea. Rev., 140, 30393053, doi:10.1175/MWR-D-11-00253.1.

    • Search Google Scholar
    • Export Citation
  • Miniscloux, F., J. D. Creutin, and S. Anquetin, 2001: Geostatistical analysis of orographic rainbands. J. Appl. Meteor., 40, 18351854, doi:10.1175/1520-0450(2001)040<1835:GAOOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., G. A. Wick, F. M. Ralph, B. E. Martner, A. B. White, and D. E. Kingsmill, 2005: Wintertime nonbrightband rain in California and Oregon during CALJET and PACJET: Geographic, interannual, and synoptic variability. Mon. Wea. Rev., 133, 11991223, doi:10.1175/MWR2919.1.

    • Search Google Scholar
    • Export Citation
  • Nuissier, O., V. Ducrocq, D. Ricard, C. Lebeaupin, and S. Anquetin, 2008: A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients. Quart. J. Roy. Meteor. Soc., 134, 111130, doi:10.1002/qj.200.

    • Search Google Scholar
    • Export Citation
  • Pontrelli, M. D., G. H. Bryan, and J. M. Fritsch, 1999: The Madison County, Virginia, flash flood of 27 June 1995. Wea. Forecasting, 14, 384404, doi:10.1175/1520-0434(1999)014<0384:TMCVFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richard, E., A. Buzzi, and G. Zängl, 2007: Quantitative precipitation forecasting in the Alps: The advances achieved by the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 831846, doi:10.1002/qj.65.

    • Search Google Scholar
    • Export Citation
  • Romero, R., C. A. Doswell III, and C. Ramis, 2000: Mesoscale numerical study of two cases of long-lived quasi-stationary convective systems over eastern Spain. Mon. Wea. Rev., 128, 37313751, doi:10.1175/1520-0493(2001)129<3731:MNSOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and Coauthors, 2009: MAP D-PHASE: Real-time demonstration of weather forecast quality in the alpine region. Bull. Amer. Meteor. Soc., 90, 13211336, doi:10.1175/2009BAMS2776.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. A. Houze, 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 811830, doi:10.1002/qj.67.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1956: The physical and dynamical problems of orographic rain. Weather, 11, 375381, doi:10.1002/j.1477-8696.1956.tb00264.x.

    • Search Google Scholar
    • Export Citation
  • Schroeder, T. A., 1977: Meteorological analysis of an Oahu flood. Mon. Wea. Rev., 105, 458468, doi:10.1175/1520-0493(1977)105<0458:MAOAOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Senesi, S., P. Bougeault, J.-L. Chèze, P. Cosentino, and R.-M. Thepenier, 1996: The Vaison-La-Romaine flash flood: Mesoscale analysis and predictability issues. Wea. Forecasting, 11, 417442, doi:10.1175/1520-0434(1996)011<0417:TVLRFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Szeto, K. K., and H.-R. Cho, 1994: A numerical investigation of squall lines. Part III. Sensitivity to precipitation processes and the Coriolis force. J. Atmos. Sci., 51, 13411351, doi:10.1175/1520-0469(1994)051<1341:ANIOSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847, doi:10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2011: The Convective and Orographically-induced Precipitation Study (COPS): The scientific strategy, the field phase, and research highlights. Quart. J. Roy. Meteor. Soc., 137, 330, doi:10.1002/qj.752.

    • Search Google Scholar
    • Export Citation
  • Yoshizaki, M., and Y. Ogura, 1988: Two- and three-dimensional modelling studies of the Big Thompson storm. J. Atmos. Sci., 45, 37003722, doi:10.1175/1520-0469(1988)045<3700:TATDMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshizaki, M., T. Kato, Y. Tanaka, H. Takayama, Y. Shoji, H. Seko, K. Arao, and K. Manabe, 2000: Analytical and numerical study of the 26 June 1998 orographic rainband observed in western Kyushu, Japan. J. Meteor. Soc. Japan, 78, 835856.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 513 227 101
PDF Downloads 284 95 5