Hurricane Eyewall Evolution in a Forced Shallow-Water Model

Eric A. Hendricks Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Eric A. Hendricks in
Current site
Google Scholar
PubMed
Close
,
Wayne H. Schubert Colorado State University, Fort Collins, Colorado

Search for other papers by Wayne H. Schubert in
Current site
Google Scholar
PubMed
Close
,
Yu-Han Chen National Taiwan University, Taipei, Taiwan

Search for other papers by Yu-Han Chen in
Current site
Google Scholar
PubMed
Close
,
Hung-Chi Kuo National Taiwan University, Taipei, Taiwan

Search for other papers by Hung-Chi Kuo in
Current site
Google Scholar
PubMed
Close
, and
Melinda S. Peng Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Melinda S. Peng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A forced shallow-water model is used to understand the role of diabatic and frictional effects in the generation, maintenance, and breakdown of the hurricane eyewall potential vorticity (PV) ring. Diabatic heating is parameterized as an annular mass sink of variable width and magnitude, and the nonlinear evolution of tropical storm–like vortices is examined under this forcing. Diabatic heating produces a strengthening and thinning PV ring in time due to the combined effects of the mass sink and radial PV advection by the induced divergent circulation. If the forcing makes the ring thin enough, then it can become dynamically unstable and break down into polygonal asymmetries or mesovortices. The onset of barotropic instability is marked by simultaneous drops in both the maximum instantaneous velocity and minimum pressure, consistent with unforced studies. However, in a sensitivity test where the heating is proportional to the relative vorticity, universal intensification occurs during barotropic instability, consistent with a recent observational study. Friction is shown to help stabilize the PV ring by reducing the eyewall PV and the unstable-mode barotropic growth rate. The radial location and structure of the heating is shown to be of critical importance for intensity variability. While it is well known that it is critical to heat in the inertially stable region inside the radius of maximum winds to spin up the hurricane vortex, these results demonstrate the additional importance of having the net heating as close as possible to the center of the storm, partially explaining why tropical cyclones with very small eyes can rapidly intensify to high peak intensities.

Corresponding author address: Eric A. Hendricks, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943. E-mail: eric.hendricks@nrlmry.navy.mil

Abstract

A forced shallow-water model is used to understand the role of diabatic and frictional effects in the generation, maintenance, and breakdown of the hurricane eyewall potential vorticity (PV) ring. Diabatic heating is parameterized as an annular mass sink of variable width and magnitude, and the nonlinear evolution of tropical storm–like vortices is examined under this forcing. Diabatic heating produces a strengthening and thinning PV ring in time due to the combined effects of the mass sink and radial PV advection by the induced divergent circulation. If the forcing makes the ring thin enough, then it can become dynamically unstable and break down into polygonal asymmetries or mesovortices. The onset of barotropic instability is marked by simultaneous drops in both the maximum instantaneous velocity and minimum pressure, consistent with unforced studies. However, in a sensitivity test where the heating is proportional to the relative vorticity, universal intensification occurs during barotropic instability, consistent with a recent observational study. Friction is shown to help stabilize the PV ring by reducing the eyewall PV and the unstable-mode barotropic growth rate. The radial location and structure of the heating is shown to be of critical importance for intensity variability. While it is well known that it is critical to heat in the inertially stable region inside the radius of maximum winds to spin up the hurricane vortex, these results demonstrate the additional importance of having the net heating as close as possible to the center of the storm, partially explaining why tropical cyclones with very small eyes can rapidly intensify to high peak intensities.

Corresponding author address: Eric A. Hendricks, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943. E-mail: eric.hendricks@nrlmry.navy.mil
Save
  • Andrews, D. G., 1983: A finite-amplitude Eliassen–Palm theorem in isentropic coordinates. J. Atmos. Sci., 40, 18771883, doi:10.1175/1520-0469(1983)040<1877:AFAEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 21282145, doi:10.1175/1520-0469(2001)058<2128:SBIASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, doi:10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vorticies to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., and W. H. Schubert, 2010: Adiabatic rearrangement of hollow PV towers. J. Adv. Model. Earth Syst.,2 (8), 19 pp., doi:10.3894/JAMES.2010.2.8.

  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705722, doi:10.1175/2008JAS2820.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., B. D. McNoldy, and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 40664077, doi:10.1175/MWR-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, doi:10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2004: Mesovortices in Hurricane Isabel. Bull. Amer. Meteor. Soc., 85, 151153, doi:10.1175/BAMS-85-2-151.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., B. D. McNoldy, and W. H. Schubert, 2002: Vortical swirls in hurricane eye clouds. Mon. Wea. Rev., 130, 31443149, doi:10.1175/1520-0493(2002)130<3144:VSIHEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y., and W. M. Frank, 2005: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part I: Dry experiments. J. Atmos. Sci., 62, 39553973, doi:10.1175/JAS3575.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y., and W. M. Frank, 2008: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part II: Moist experiments. J. Atmos. Sci., 65, 106122, doi:10.1175/2007JAS2132.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., X. Ge, M. S. Peng, and W. Wang, 2012: Dependence of tropical cyclone intensification on the Coriolis parameter. Trop. Cyclone Res. Rev., 1, 242253.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., M. K. Yau, and Y. Martinez, 2013a: Impact of asymmetric dynamical processes on the structure and intensity change of two-dimensional hurricane-like annular vortices. J. Atmos. Sci., 70, 559582, doi:10.1175/JAS-D-12-0192.1.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., M. K. Yau, and Y. Martinez, 2013b: On the origin and impact of a polygonal eyewall in the rapid intensification of Hurricane Wilma (2005). J. Atmos. Sci., 70, 3839–3858, doi:10.1175/JAS-D-13-091.1.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56, 16741687, doi:10.1175/1520-0469(1999)056<1674:VRWAHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, doi:10.1002/qj.49712353810.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and C. Lu, 1997: Free waves on barotropic vortices. Part I: Eigenmode structure. J. Atmos. Sci., 54, 18681885, doi:10.1175/1520-0469(1997)054<1868:FWOBVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., H. D. Snell, and Z. Yang, 2001: Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci., 58, 421435, doi:10.1175/1520-0469(2001)058<0421:ASDOHL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., V. A. Vladimirov, and P. V. Denissenko, 2002: An experimental study on hurricane mesovortices. J. Fluid Mech., 471, 132, doi:10.1017/S0022112002001647.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Musgrave, K. D., R. K. Taft, J. L. Vigh, B. D. McNoldy, and W. H. Schubert, 2012: Time evolution of the intensity and size of tropical cyclones. J. Adv. Model. Earth Syst.,4, M08001, doi:10.1029/2011MS000104.

  • Nguyen, C. M., M. J. Reeder, N. E. Davidson, R. K. Smith, and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137,829844, doi:10.1002/qj.823.

    • Search Google Scholar
    • Export Citation
  • Nguyen, S. V., R. K. Smith, and M. T. Montgomery, 2008: Tropical cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, doi:10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2000: The algebraic growth of wavenumber one disturbances in hurricane-like vortices. J. Atmos. Sci., 57, 35143538, doi:10.1175/1520-0469(2000)057<3514:TAGOWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020, doi:10.1175/1520-0469(2002)059<2989:NTDPTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., E. S. Blake, H. D. Cobb, and D. P. Roberts, 2013: Hurricane Wilma. Tech. Rep., NWS/NHC Tropical Cyclone Rep. TCR-AL252005, 27 pp. [Available online at http://www.nhc.noaa.gov/2005atlan.shtml.]

  • Reasor, P. D., M. T. Montgomery, F. D. Marks, and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., W. S. Olson, V. M. Karyampudi, and H. F. Pierce, 1998: Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126, 12291247, doi:10.1175/1520-0493(1998)126<1229:SDLHDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. D. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340, doi:10.1175/JAS3595.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal control of hurricane intensity: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133147, doi:10.1175/2008JAS2717.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358, doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., and M. T. Montgomery, 2002: Wavenumber-2 and wavenumber-m vortex Rossby wave instabilities in a generalized three-region model. J. Atmos. Sci., 59, 24212427, doi:10.1175/1520-0469(2002)059<2421:WAWMVR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., 1986: Nongeostrophic theory of zonally averaged circulation. Part I: Formulation. J. Atmos. Sci., 43, 26002618, doi:10.1175/1520-0469(1986)043<2600:NTOZAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vigh, J., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1995: On the interaction of tropical-cyclone scale vortices. IV: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 121, 95126, doi:10.1002/qj.49712152106.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution of a landfalling typhoon. Mon. Wea. Rev., 137, 2140, doi:10.1175/2008MWR2516.1.

    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188, doi:10.1175/JAS3971.1.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., Y. Liu, D.-L. Zhang, and Y. Chen, 2004: A multiscale numerical study of Hurricane Andrew (1992). Part VI: Small-scale inner-core structures and wind streaks. Mon. Wea. Rev., 132, 14101433, doi:10.1175/1520-0493(2004)132<1410:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 565 107 5
PDF Downloads 473 127 8