Sea Surface Temperature Anomalies off Baja California: A Possible Precursor of ENSO

Jiaxin Feng Department of Earth, Ocean and Atmospheric Science, and Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

Search for other papers by Jiaxin Feng in
Current site
Google Scholar
PubMed
Close
,
Zhaohua Wu Department of Earth, Ocean and Atmospheric Science, and Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

Search for other papers by Zhaohua Wu in
Current site
Google Scholar
PubMed
Close
, and
Xiaolei Zou Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida

Search for other papers by Xiaolei Zou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many recent studies have shown that observed El Niño–Southern Oscillation (ENSO) events are spatially and temporally diverse and that they have undergone changes in characteristics. To quantitatively capture these features, multidimensional ensemble empirical mode decomposition (MEEMD) is employed to isolate the temporal–spatial evolution of the sea surface temperature anomalies (SSTAs) on naturally separated time scales. An alternative Niño-3.4 index is also defined to reflect more on the interannual variability of equatorial Pacific SSTAs. Using this alternative index, 27 ENSO warm events are identified and the spatial–temporal evolution of each event is examined. It is found that a patch of SSTAs off Baja California appears to extend southwestward and reach the equatorial region near the international date line in about 1 year. This warm signal then amplifies and extends eastward, developing into an ENSO warm event. This type of development has been dominant in recent decades. For this type of ENSO warm event, it appears that SSTAs off Baja California are instrumental to ENSO development, possibly serving as a precursor of an ENSO event.

Corresponding author address: Zhaohua Wu, Meteorology, Rm. 404 Love Bldg., The Florida State University, 1017 Academic Way, Tallahassee, FL 32306-4520. E-mail: zwu@fsu.edu

Abstract

Many recent studies have shown that observed El Niño–Southern Oscillation (ENSO) events are spatially and temporally diverse and that they have undergone changes in characteristics. To quantitatively capture these features, multidimensional ensemble empirical mode decomposition (MEEMD) is employed to isolate the temporal–spatial evolution of the sea surface temperature anomalies (SSTAs) on naturally separated time scales. An alternative Niño-3.4 index is also defined to reflect more on the interannual variability of equatorial Pacific SSTAs. Using this alternative index, 27 ENSO warm events are identified and the spatial–temporal evolution of each event is examined. It is found that a patch of SSTAs off Baja California appears to extend southwestward and reach the equatorial region near the international date line in about 1 year. This warm signal then amplifies and extends eastward, developing into an ENSO warm event. This type of development has been dominant in recent decades. For this type of ENSO warm event, it appears that SSTAs off Baja California are instrumental to ENSO development, possibly serving as a precursor of an ENSO event.

Corresponding author address: Zhaohua Wu, Meteorology, Rm. 404 Love Bldg., The Florida State University, 1017 Academic Way, Tallahassee, FL 32306-4520. E-mail: zwu@fsu.edu
Save
  • Ashok, K., and T. Yamagata, 2009: Climate change: The El Niño with a difference. Nature, 461, 481484, doi:10.1038/461481a.

  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in the tropical atmosphere/ocean system: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, doi:10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 18, 820829, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Busalacchi, A., and J. J. O’Brien, 1981: Interannual variability of the equatorial Pacific in the 1960s. J. Geophys. Res., 86, 10 90110 907, doi:10.1029/JC086iC11p10901.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827832, doi:10.1038/321827a0.

  • Clarke, A. J., and S. Van Gorder, 2001: ENSO prediction using an ENSO trigger and a proxy for western equatorial pacific warm pool movement. Geophys. Res. Lett., 28, 579582, doi:10.1029/2000GL012201.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., K. M. Cobb, J. C. Furtado, N. Schneider, B. T. Anderson, A. Bracco, M. A. Alexander, and D. J. Vimont, 2010: Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci., 3, 762765, doi:10.1038/ngeo984.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2009: Multi-scale analysis of teleconnection indices: Climate noise and nonlinear trends analysis. Nonlinear Processes Geophys., 16, 6576, doi:10.5194/npg-16-65-2009.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2010: Long-range dependence and climate noise characteristics of Antarctic temperature data. J. Climate, 23, 60746081, doi:10.1175/2010JCLI3654.1.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., and T. Woollings, 2011: On the persistence and predictability properties of north Atlantic climate variability. J. Climate, 24, 466472, doi:10.1175/2010JCLI3739.1.

    • Search Google Scholar
    • Export Citation
  • Fu, C., and J. Fletcher, 1985: Two patterns of equatorial warming associated with El Niño. Chin. Sci. Bull., 30, 13601364.

  • Fu, C., H. F. Diaz, and J. O. Fletcher, 1986: Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Mon. Wea. Rev., 114, 17161739, doi:10.1175/1520-0493(1986)114<1716:COTROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, C., C. Qian, and Z. Wu, 2011: Projection of global mean surface air temperature changes in next 40 years: Uncertainties of climate models and an alternative approach. Sci. China: Earth Sci., 54, 14001406, doi:10.1007/s11430-011-4235-9.

    • Search Google Scholar
    • Export Citation
  • Galanti, E., and E. Tziperman, 2000: ENSO’s phase locking to the seasonal cycle in the fast SST, fast-wave, and mixed-mode regimes. J. Atmos. Sci., 57, 29362950, doi:10.1175/1520-0469(2000)057<2936:ESPLTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., B. Huang, J. L. Kinter III, Z. Wu, and A. Kumar, 2012a: Connection of the stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: Interdecadal variations. Climate Dyn., 38, 2543, doi:10.1007/s00382-011-1073-6.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Jha, W. Wang, B. Huang, and B. Huang, 2012b: An analysis of warm pool and cold tongue El Niños: Air–sea coupling processes, global influences, and recent trends. Climate Dyn., 38, 20172035, doi:10.1007/s00382-011-1224-9.

    • Search Google Scholar
    • Export Citation
  • Huang, B., Z.-Z. Hu, J. L. Kinter III, Z. Wu, and A. Kumar, 2012a: Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: Methodology and composite life cycle. Climate Dyn., 38, 123, doi:10.1007/s00382-011-1250-7.

    • Search Google Scholar
    • Export Citation
  • Huang, B., Z.-Z. Hu, E. K. Schneider, Z. Wu, Y. Xue, and B. Klinger, 2012b: Influences of subtropical air–sea interaction on the multidecadal AMOC variability in the NCEP climate forecast system. Climate Dyn., 39, 531555, doi:10.1007/s00382-011-1258-z.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Z. Wu, 2008: A review on Hilbert–Huang transform: Method and its applications on geophysical studies. Rev. Geophys.,46, RG2006, doi:10.1029/2007RG000228.

  • Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung, and H. H. Liu, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, 454, 903995, doi:10.1098/rspa.1998.0193.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, doi:10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M. E., J. P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620, doi:10.1007/s00382-004-0457-2.

    • Search Google Scholar
    • Export Citation
  • Luther, D. S., D. E. Harrison, and R. A. Knox, 1983: Zonal winds in the central equatorial Pacific and El Niño. Science, 222, 327330, doi:10.1126/science.222.4621.327.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1976: Eastern tropical ocean response to changing wind systems with application to El Niño. J. Phys. Oceanogr., 6, 632645, doi:10.1175/1520-0485(1976)006<0632:ETORTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., H. P. Freitag, S. P. Hayes, B. A. Taft, Z. Chien, and K. Wyrtki, 1988: The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986. J. Geophys. Res., 93 (C9), 10 58910 603, doi:10.1029/JC093iC09p10589.

    • Search Google Scholar
    • Export Citation
  • Misra, V., H. Li, Z. Wu, and S. DiNapoli, 2013: Global seasonal climate predictability in a two tiered forecast system: Part I: Boreal summer and fall seasons. Climate Dyn., 42, 1425–1448, doi:10.1007/s00382-013-1812-y.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 2004: Our Affair with El Niño: How We Transformed an Enchanting Peruvian Current into a Global Climate Hazard. 1st ed. Princeton University Press, 296 pp.

    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, Z. Wu, and Z. Yan, 2009: On the secular change of spring onset in Stockholm. Geophys. Res. Lett.,36, L12706, doi:10.1029/2009GL038617.

  • Qian, C., Z. Wu, C. Fu, and T. J. Zhou, 2010: On multi-timescale variability of temperature in China in modulated annual cycle reference frame. Adv. Atmos. Sci., 27, 11691182, doi:10.1007/s00376-009-9121-4.

    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, and Z. Wu, 2011: Changes in the amplitude of the temperature annual cycle in China and their implication for climate change research. J. Climate, 24, 52925302, doi:10.1175/JCLI-D-11-00006.1.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in the tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruzmaikin, A., and J. Feynman, 2009: Search for climate trends in satellite data. Adv. Adapt. Data Anal., 1, 667679, doi:10.1142/S1793536909000266.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45, 549566, doi:10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis. J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, doi:10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., Z. Kuang, P. Huybers, L. Yu, and G. Gebbie, 2007: On the predictability and dynamics of westerly wind bursts in the equatorial Pacific. Eos, Trans. Amer. Geophys. Union,88, (Fall Meeting. Suppl.), Abstract GC51A-0166.

  • Vecchio, A., and V. Carbone, 2010: Amplitude–frequency fluctuations of the seasonal cycle, temperature anomalies, and long-range persistence of climate records. Phys. Rev.,82E, 066101, doi:10.1103/PhysRevE.82.066101.

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, doi:10.1029/2001GL013435.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, doi:10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, and E. S. Sarachik, 1998: Variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103 (C7), 14 24114 259, doi:10.1029/97JC02905.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 141, doi:10.1142/S1793536909000047.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, S. R. Long, and C. K. Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA, 104, 14 88914 894, doi:10.1073/pnas.0701020104.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., E. K. Schneider, B. P. Kirtman, E. S. Sarachik, N. E. Huang, and C. J. Tucker, 2008: The modulated annual cycle: An alternative reference frame for climate anomalies. Climate Dyn., 31, 823841, doi:10.1007/s00382-008-0437-z.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, and X. Chen, 2009: The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal., 1, 339372, doi:10.1142/S1793536909000187.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, doi:10.1007/s00382-011-1128-8.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, doi:10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, doi:10.1029/2006JD007654.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific. J. Climate, 23, 28692884, doi:10.1175/2010JCLI3171.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, doi:10.1029/2012GL052483.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., P. Chang, and L. Ji, 2009: Linking the Pacific meridional mode to ENSO: Coupled model analysis. J. Climate, 22, 34883505, doi:10.1175/2008JCLI2473.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, and Z. Wu, 2012: The role of ocean dynamics in the interaction between the Atlantic meridional and equatorial modes. J. Climate, 25, 35833598, doi:10.1175/JCLI-D-11-00364.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 582 211 74
PDF Downloads 275 67 4