Emergence and Equilibration of Jets in Beta-Plane Turbulence: Applications of Stochastic Structural Stability Theory

Navid C. Constantinou Department of Physics, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Navid C. Constantinou in
Current site
Google Scholar
PubMed
Close
,
Brian F. Farrell Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Brian F. Farrell in
Current site
Google Scholar
PubMed
Close
, and
Petros J. Ioannou Department of Physics, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Petros J. Ioannou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Stochastic structural stability theory (S3T) provides analytical methods for understanding the emergence and equilibration of jets from the turbulence in planetary atmospheres based on the dynamics of the statistical mean state of the turbulence closed at second order. Predictions for formation and equilibration of turbulent jets made using S3T are critically compared with results of simulations made using the associated quasi-linear and nonlinear models. S3T predicts the observed bifurcation behavior associated with the emergence of jets, their equilibration, and their breakdown as a function of parameters. Quantitative differences in bifurcation parameter values between predictions of S3T and results of nonlinear simulations are traced to modification of the eddy spectrum which results from two processes: nonlinear eddy–eddy interactions and formation of discrete nonzonal structures. Remarkably, these nonzonal structures, which substantially modify the turbulence spectrum, are found to arise from S3T instability. Formation as linear instabilities and equilibration at finite amplitude of multiple equilibria for identical parameter values in the form of jets with distinct meridional wavenumbers is verified, as is the existence at equilibrium of finite-amplitude nonzonal structures in the form of nonlinearly modified Rossby waves. When zonal jets and nonlinearly modified Rossby waves coexist at finite amplitude, the jet structure is generally found to dominate even if it is linearly less unstable. The physical reality of the manifold of S3T jets and nonzonal structures is underscored by the existence in nonlinear simulations of jet structure at subcritical S3T parameter values that are identified with stable S3T jet modes excited by turbulent fluctuations.

Corresponding author address: Navid Constantinou, University of Athens, Department of Physics, Section of Astrophysics, Astronomy and Mechanics, Build IV, Office 32, Panepistimiopolis, 15784 Zografos, Athens, Greece. E-mail: navidcon@phys.uoa.gr

Abstract

Stochastic structural stability theory (S3T) provides analytical methods for understanding the emergence and equilibration of jets from the turbulence in planetary atmospheres based on the dynamics of the statistical mean state of the turbulence closed at second order. Predictions for formation and equilibration of turbulent jets made using S3T are critically compared with results of simulations made using the associated quasi-linear and nonlinear models. S3T predicts the observed bifurcation behavior associated with the emergence of jets, their equilibration, and their breakdown as a function of parameters. Quantitative differences in bifurcation parameter values between predictions of S3T and results of nonlinear simulations are traced to modification of the eddy spectrum which results from two processes: nonlinear eddy–eddy interactions and formation of discrete nonzonal structures. Remarkably, these nonzonal structures, which substantially modify the turbulence spectrum, are found to arise from S3T instability. Formation as linear instabilities and equilibration at finite amplitude of multiple equilibria for identical parameter values in the form of jets with distinct meridional wavenumbers is verified, as is the existence at equilibrium of finite-amplitude nonzonal structures in the form of nonlinearly modified Rossby waves. When zonal jets and nonlinearly modified Rossby waves coexist at finite amplitude, the jet structure is generally found to dominate even if it is linearly less unstable. The physical reality of the manifold of S3T jets and nonzonal structures is underscored by the existence in nonlinear simulations of jet structure at subcritical S3T parameter values that are identified with stable S3T jet modes excited by turbulent fluctuations.

Corresponding author address: Navid Constantinou, University of Athens, Department of Physics, Section of Astrophysics, Astronomy and Mechanics, Build IV, Office 32, Panepistimiopolis, 15784 Zografos, Athens, Greece. E-mail: navidcon@phys.uoa.gr
Save
  • Bakas, N. A., and P. J. Ioannou, 2011: Structural stability theory of two-dimensional fluid flow under stochastic forcing. J. Fluid Mech., 682, 332361, doi:10.1017/jfm.2011.228.

    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2013a: Emergence of large scale structure in barotropic β-plane turbulence. Phys. Rev. Lett.,110, 224501, doi:10.1103/PhysRevLett.110.224501.

  • Bakas, N. A., and P. J. Ioannou, 2013b: On the mechanism underlying the spontaneous emergence of barotropic zonal jets. J. Atmos. Sci., 70, 22512271, doi:10.1175/JAS-D-12-0102.1.

    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2014: A theory for the emergence of coherent structures in beta-plane turbulence. J. Fluid Mech.,740, 312–341, doi:10.1017/jfm.2013.663.

  • Baldwin, M. P., P. B. Rhines, H.-P. Huang, and M. E. McIntyre, 2007: The jet-stream conundrum. Science, 315, 467468, doi:10.1126/science.1131375.

    • Search Google Scholar
    • Export Citation
  • Balk, A. M., and T. Yoshikawa, 2009: The Rossby wave extra invariant in the physical space. Physica D, 238, 384394, doi:10.1016/j.physd.2008.11.008.

    • Search Google Scholar
    • Export Citation
  • Balk, A. M., S. V. Nazarenko, and V. E. Zakharov, 1991: New invariant for drift turbulence. Phys. Lett., 152A, 276280, doi:10.1016/0375-9601(91)90105-H.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425, doi:10.1017/S0022112009006375.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., S. Karabasov, J. Farrar, and I. Kamenkovich, 2011: On latency of multiple zonal jets in the oceans. J. Fluid Mech., 686, 534567, doi:10.1017/jfm.2011.345.

    • Search Google Scholar
    • Export Citation
  • Bernstein, J., 2009: Dynamics of turbulent jets in the atmosphere and ocean. Ph.D. dissertation, Harvard University, Publ. AAT 3365198, 116 pp.

  • Bernstein, J., and B. F. Farrell, 2010: Low frequency variability in a turbulent baroclinic jet: Eddy–mean flow interactions in a two-level model. J. Atmos. Sci., 67, 452467, doi:10.1175/2009JAS3170.1.

    • Search Google Scholar
    • Export Citation
  • Bouchet, F., and A. Venaille, 2012: Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep., 515, 227295, doi:10.1016/j.physrep.2012.02.001.

    • Search Google Scholar
    • Export Citation
  • Connaughton, C. P., B. T. Nadiga, S. V. Nazarenko, and B. E. Quinn, 2010: Modulational instability of Rossby and drift waves and generation of zonal jets. J. Fluid Mech., 654, 207231, doi:10.1017/S0022112010000510.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., 2001: A simple model for transient eddy momentum fluxes in the upper troposphere. J. Atmos. Sci., 58, 30193035, doi:10.1175/1520-0469(2001)058<3019:ASMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and B. F. Farrell, 1996: The quasi-linear equilibration of a thermally maintained stochastically excited jet in a quasigeostrophic model. J. Atmos. Sci., 53, 17811797, doi:10.1175/1520-0469(1996)053<1781:TQLEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855874, doi:10.1175/2007JAS2227.1.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1993: Stochastic dynamics of baroclinic waves. J. Atmos. Sci., 50, 40444057, doi:10.1175/1520-0469(1993)050<4044:SDOBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1994: A theory for the statistical equilibrium energy spectrum and heat flux produced by transient baroclinic waves. J. Atmos. Sci., 51, 26852698, doi:10.1175/1520-0469(1994)051<2685:ATFTSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1995: Stochastic dynamics of the midlatitude atmospheric jet. J. Atmos. Sci., 52, 16421656, doi:10.1175/1520-0469(1995)052<1642:SDOTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2002: Perturbation growth and structure in uncertain flows. Part II. J. Atmos. Sci., 59, 26472664, doi:10.1175/1520-0469(2002)059<2647:PGASIU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2003: Structural stability of turbulent jets. J. Atmos. Sci., 60, 21012118, doi:10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2007: Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci., 64, 36523665, doi:10.1175/JAS4016.1.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2008: Formation of jets by baroclinic turbulence. J. Atmos. Sci., 65, 33533375, doi:10.1175/2008JAS2611.1.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2009a: Emergence of jets from turbulence in the shallow-water equations on an equatorial beta plane. J. Atmos. Sci., 66, 31973207, doi:10.1175/2009JAS2941.1.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2009b: A stochastic structural stability theory model of the drift wave–zonal flow system. Phys. Plasmas,16, 112903, doi:10.1063/1.3258666.

  • Farrell, B. F., and P. J. Ioannou, 2009c: A theory of baroclinic turbulence. J. Atmos. Sci., 66, 24442454, doi:10.1175/2009JAS2989.1.

    • Search Google Scholar
    • Export Citation
  • Fjørtoft, R., 1953: On the changes in the spectral distribution of kinetic energy for two-dimensional, nondivergent flow. Tellus, 5, 225230, doi:10.1111/j.2153-3490.1953.tb01051.x.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1974: The stability on planetary waves on an infinite beta-plane. Geophys. Astrophys. Fluid Dyn., 6, 2947, doi:10.1080/03091927409365786.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., and W. A. Robinson, 1998: Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci., 55, 611632, doi:10.1175/1520-0469(1998)055<0611:TDTAPZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., and Coauthors, 2004: Dynamics of Jupiter’s atmosphere. Jupiter: the Planet, Satellites, and Magnetosphere, F. Bagenal, T. E. Dowling, and W. B. McKinnon, Eds., Cambridge University Press, 105–128.

  • Lilly, D. K., 1969: Numerical simulation of two-dimensional turbulence. Phys. Fluids, 12, II240II249, doi:10.1063/1.1692444.

  • Lorenz, E. N., 1972: Barotropic instability of Rossby wave motion. J. Atmos. Sci., 29, 258269, doi:10.1175/1520-0469(1972)029<0258:BIORWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manfroi, A. J., and W. R. Young, 1999: Slow evolution of zonal jets on the beta plane. J. Atmos. Sci., 56, 784800, doi:10.1175/1520-0469(1999)056<0784:SEOZJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marston, J. B., E. Conover, and T. Schneider, 2008: Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci., 65, 19551966, doi:10.1175/2007JAS2510.1.

    • Search Google Scholar
    • Export Citation
  • Miller, J., 1990: Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett., 65, 21372140, doi:10.1103/PhysRevLett.65.2137.

    • Search Google Scholar
    • Export Citation
  • Nozawa, T., and Y. Yoden, 1997: Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere. Phys. Fluids, 9, 20812093, doi:10.1063/1.869327.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2007: Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy-eddy interactions. Geophys. Res. Lett.,34, L22801, doi:10.1029/2007GL031779.

  • Parker, J. B., and J. A. Krommes, 2014: Generation of zonal flows through symmetry breaking of statistical homogeneity. New J. Phys., in press.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417433, doi:10.1017/S0022112075001504.

  • Robert, R., and J. Sommeria, 1991: Statistical equilibrium states for two-dimensional flows. J. Fluid Mech., 229, 291310, doi:10.1017/S0022112091003038.

    • Search Google Scholar
    • Export Citation
  • Salyk, C., A. P. Ingersoll, J. Lorre, A. Vasavada, and A. D. Del Genio, 2006: Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data. Icarus, 185, 430442, doi:10.1016/j.icarus.2006.08.007.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and R. S. Lindzen, 1984: A numerical simulation of barotropic instability. Part I: Wave-mean flow interaction. J. Atmos. Sci., 41, 13681379, doi:10.1175/1520-0469(1984)041<1368:ANSOBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and D. G. Dritschel, 2012: The structure of zonal jets in geostrophic turbulence. J. Fluid Mech., 711, 576598, doi:10.1017/jfm.2012.410.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., and W. R. Young, 2012: Zonostrophic instability. J. Atmos. Sci., 69, 16331656, doi:10.1175/JAS-D-11-0200.1.

  • Sukoriansky, S., N. Dikovskaya, and B. Galperin, 2008: Nonlinear waves in zonostrophic turbulence. Phys. Rev. Lett.,101, 178501, doi:10.1103/PhysRevLett.101.178501.

  • Tobias, S. M., and J. B. Marston, 2013: Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett.,110, 104502, doi:10.1103/PhysRevLett.110.104502.

  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, doi:10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vasavada, A. R., and A. P. Showman, 2005: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys., 68, 19351996, doi:10.1088/0034-4885/68/8/R06.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1978: Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci., 35, 13991426, doi:10.1175/1520-0469(1978)035<1399:PCBROJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wordsworth, R. D., P. L. Read, and Y. H. Yamazaki, 2008: Turbulence, waves, and jets in a differentially heated rotating annulus experiment. Phys. Fluids,20, 126602, doi:10.1063/1.2990042.

  • Wunsch, C., 2003: Greenland–Antarctic phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores. Quat. Sci. Rev., 22, 16311646, doi:10.1016/S0277-3791(03)00152-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and I. M. Held, 1999: A linear stochastic model of a GCM’s midlatitude storm tracks. J. Atmos. Sci., 56, 34163435, doi:10.1175/1520-0469(1999)056<3416:ALSMOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 514 130 8
PDF Downloads 388 113 4