• Athanasiadis, P. J., , J. M. Wallace, , and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 13611381, doi:10.1175/2009JAS3270.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and D. L. Hartmann, 2010: Dynamical feedbacks and the persistence of the NAO. J. Atmos. Sci., 67, 851865, doi:10.1175/2009JAS3193.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49, 19241946, doi:10.1175/1520-0469(1992)049<1924:TMOLFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52, 207226, doi:10.1175/1520-0469(1995)052<0207:OOSTAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, M., , and M. Mak, 1990: Symbolic relation between planetary and synoptic-scale waves. J. Atmos. Sci., 47, 29532968, doi:10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, M., , and H. M. van den Dool, 1991: Low-frequency waves and traveling storm tracks. Part I: Barotropic component. J. Atmos. Sci., 48, 14201436, doi:10.1175/1520-0469(1991)048<1420:LFWATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2001: GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season. J. Atmos. Sci., 58, 17841800, doi:10.1175/1520-0469(2001)058<1784:GAODOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , S. Lee, , and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deng, Y., , and M. Mak, 2005: An idealized model study relevant to the dynamics of the midwinter minimum of the Pacific storm track. J. Atmos. Sci., 62, 12091225, doi:10.1175/JAS3400.1.

    • Search Google Scholar
    • Export Citation
  • Duchon, C., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Egger, J., , and H.-D. Schilling, 1983: On the theory of the long-term variability of the atmosphere. J. Atmos. Sci., 40, 10731085, doi:10.1175/1520-0469(1983)040<1073:OTTOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., , and E. K. M. Chang, 2004: The effects of variations in jet width on the growth of baroclinic waves: Implications for midwinter Pacific storm track variability. J. Atmos. Sci., 61, 2340, doi:10.1175/1520-0469(2004)061<0023:TEOVIJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large Scale Dynamical Processes in the Atmosphere, B. Hoskins and R. Pearce, Eds., Academic Press, 127–169.

  • Hendon, H. H., , and D. L. Hartmann, 1985: Variability in a nonlinear model of the atmosphere with zonally symmetric forcing. J. Atmos. Sci., 42, 27832797, doi:10.1175/1520-0469(1985)042<2783:VIANMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 2010: Eddy-induced instability for low-frequency variability. J. Atmos. Sci., 67, 19471964, doi:10.1175/2009JAS3185.1.

  • Jin, F.-F., , L.-L. Pan, , and M. Watanabe, 2006a: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 16771694, doi:10.1175/JAS3715.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , L.-L. Pan, , and M. Watanabe, 2006b: Dynamics of synoptic eddy and low-frequency flow interaction. Part II: A theory for low-frequency modes. J. Atmos. Sci., 63, 16951708, doi:10.1175/JAS3716.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kok, C. J., , J. D. Opsteegh, , and H. M. van den Dool, 1987: Linear models: Useful tools to analyze GCM results. Mon. Wea. Rev., 115, 19962008, doi:10.1175/1520-0493(1987)115<1996:LMUTTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , and F.-F. Jin, 2009: Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys. Res. Lett., 36, L05709, doi:10.1029/2008GL036435.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , F.-F. Jin, , J.-H. Park, , H.-L. Ren, , and I.-S. Kang, 2010a: A general rule for synoptic-eddy feedback onto low-frequency flow. Climate Dyn., 35, 10111026, doi:10.1007/s00382-009-0606-8.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , F.-F. Jin, , and H.-L. Ren, 2010b: Role of synoptic eddies on low-frequency precipitation variation. J. Geophys. Res., 115, D19115, doi:10.1029/2009JD013675.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313328, doi:10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 25892613, doi:10.1175/1520-0469(1991)048<2589:VOTBAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , and S. B. Feldstein, 1996: Mechanism of zonal index evolution in a two-layer model. J. Atmos. Sci., 53, 22322246, doi:10.1175/1520-0469(1996)053<2232:MOZIEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., , J.-Y. Lee, , K.-J. Ha, , B. Wang, , A. Kitoh, , Y. Kajikawa, , and M. Abe, 2013: Role of the Tibetan Plateau on the annual variation of mean atmospheric circulation and storm-track activity. J. Climate, 26, 52705286, doi:10.1175/JCLI-D-12-00213.1.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, doi:10.1029/1999GL010478.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 4414–4429, doi:10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2001: Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2003: Eddy-zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, doi:10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 16291641, doi:10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , and T. Sampe, 2002: Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter. Geophys. Res. Lett., 29, doi:10.1029/2002GL015535.

    • Search Google Scholar
    • Export Citation
  • Pan, L.-L., , F.-F. Jin, , and M. Watanabe, 2006: Dynamics of synoptic eddy and low-frequency flow interaction. Part III: Baroclinic model results. J. Atmos. Sci., 63, 17091725, doi:10.1175/JAS3717.1.

    • Search Google Scholar
    • Export Citation
  • Park, H.-S., , J. C. H. Chiang, , and S.-W. Son, 2010: The role of the central Asian mountains on the midwinter suppression of North Pacific storminess. J. Atmos. Sci., 67, 37063720, doi:10.1175/2010JAS3349.1.

    • Search Google Scholar
    • Export Citation
  • Penny, S., , G. H. Roe, , and D. S. Battisti, 2010: The source of the midwinter suppression in storminess over the North Pacific. J. Climate, 23, 634648, doi:10.1175/2009JCLI2904.1.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., , F.-F. Jin, , J.-S. Kug, , J.-X. Zhao, , and J. Park, 2009: A kinematic mechanism for positive feedback between synoptic eddies and NAO. Geophys. Res. Lett., 36, L11709, doi:10.1029/2009GL037294.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., , F.-F. Jin, , J.-S. Kug, , and L. Gao, 2011: Transformed eddy-PV flux and positive synoptic eddy feedback onto low-frequency flow. Climate Dyn., 36, 23572370, doi:10.1007/s00382-010-0913-0.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., , F.-F. Jin, , and L. Gao, 2012: Anatomy of synoptic eddy–NAO interaction through eddy-structure decomposition. J. Atmos. Sci., 69, 21712191, doi:10.1175/JAS-D-11-069.1.

    • Search Google Scholar
    • Export Citation
  • Ren, X., , X. Yang, , and C. Chu, 2010: Seasonal variations of the synoptic-scale transient eddy activity and polar-front jet over East Asia. J. Climate, 23, 32223233, doi:10.1175/2009JCLI3225.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1991: The dynamics of low-frequency variability in a simple model of the global atmosphere. J. Atmos. Sci., 48, 429441, doi:10.1175/1520-0469(1991)048<0429:TDOLFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415422, doi:10.1175/1520-0469(2000)057<0415:ABMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , J. M. Wallace, , and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2009: Self-limiting feedback between baroclinic waves and a NAO-like sheared zonal flow. Geophys. Res. Lett., 36, L08803, doi:10.1029/2009GL038520.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , and A. Barcilon, 1995: Low-frequency variability and wavenumber selection in models with zonally symmetric forcing. J. Atmos. Sci., 52, 491503, doi:10.1175/1520-0469(1995)052<0491:LFVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , and P. Stone, 2010: Baroclinic eddy equilibration under specified seasonal forcing. J. Atmos. Sci., 67, 26322648, doi:10.1175/2010JAS3392.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , X. Yang, , Y. Nie, , and G. Chen, 2012: Annular mode like variation in a multi-layer QG model. J. Atmos. Sci., 69, 29402958, doi:10.1175/JAS-D-11-0214.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., , and I. M. Held, 1999: A linear stochastic model of a GCM’s midlatitude storm tracks. J. Atmos. Sci., 56, 34163435, doi:10.1175/1520-0469(1999)056<3416:ALSMOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., , and E. K. M. Chang, 2005: The impact of zonal propagation and seeding on the eddy-mean flow equilibrium of a zonally varying two-layer model. J. Atmos. Sci., 62, 22612273, doi:10.1175/JAS3473.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 6
PDF Downloads 9 9 2

Eddy-Induced Growth Rate of Low-Frequency Variability and Its Mid- to Late Winter Suppression in the Northern Hemisphere

View More View Less
  • 1 Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China
  • 2 Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China, and Department of Meteorology, School of Ocean and Earth Sciences and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 3 School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
© Get Permissions
Restricted access

Abstract

Synoptic eddy and low-frequency flow (SELF) feedback plays an important role in reinforcing low-frequency variability (LFV). Recent studies showed that an eddy-induced growth (EIG) or instability makes a fundamental contribution to the maintenance of LFV. To quantify the efficiency of the SELF feedback, this study examines the spatiotemporal features of the empirical diagnostics of EIG and its associations with LFV. The results show that, in terms of eddy vorticity forcing, the EIG rate of LFV is generally larger (smaller) in the upper (lower) troposphere, whereas, in terms of eddy potential vorticity forcing, it is larger in the lower troposphere to partly balance the damping effect of surface friction. The local EIG rate shows a horizontal spatial distribution that corresponds to storm-track activity, which tends to be responsible for maintaining LFV amplitudes and patterns as well as sustaining eddy-driven jets. In fact, the EIG rate has a well-defined seasonality, being generally larger in cold seasons and smaller in the warmest season, and this seasonality is stronger in the Northern Hemisphere than in the Southern Hemisphere. This study also reveals a mid- to late winter (January–March) suppression of the EIG rate in the Northern Hemisphere, which indicates a reduced eddy feedback efficiency and may be largely attributed to the eddy kinetic energy suppression and the midlatitude zonal wind maximum in the midwinter of the Northern Hemisphere.

Corresponding author address: Dr. Hong-Li Ren, Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, 46 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China. E-mail: renhl@cma.gov.cn

Abstract

Synoptic eddy and low-frequency flow (SELF) feedback plays an important role in reinforcing low-frequency variability (LFV). Recent studies showed that an eddy-induced growth (EIG) or instability makes a fundamental contribution to the maintenance of LFV. To quantify the efficiency of the SELF feedback, this study examines the spatiotemporal features of the empirical diagnostics of EIG and its associations with LFV. The results show that, in terms of eddy vorticity forcing, the EIG rate of LFV is generally larger (smaller) in the upper (lower) troposphere, whereas, in terms of eddy potential vorticity forcing, it is larger in the lower troposphere to partly balance the damping effect of surface friction. The local EIG rate shows a horizontal spatial distribution that corresponds to storm-track activity, which tends to be responsible for maintaining LFV amplitudes and patterns as well as sustaining eddy-driven jets. In fact, the EIG rate has a well-defined seasonality, being generally larger in cold seasons and smaller in the warmest season, and this seasonality is stronger in the Northern Hemisphere than in the Southern Hemisphere. This study also reveals a mid- to late winter (January–March) suppression of the EIG rate in the Northern Hemisphere, which indicates a reduced eddy feedback efficiency and may be largely attributed to the eddy kinetic energy suppression and the midlatitude zonal wind maximum in the midwinter of the Northern Hemisphere.

Corresponding author address: Dr. Hong-Li Ren, Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, 46 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China. E-mail: renhl@cma.gov.cn
Save