• Blossey, P. N., , C. S. Bretherton, , J. Cetrone, , and M. Kharoutdinov, 2007: Cloud-resolving model simulations of KWAJEX: Model sensitivities and comparisons with satellite and radar observations. J. Atmos. Sci., 64, 14881508, doi:10.1175/JAS3982.1.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, doi:10.1175/2011BAMS2856.1.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., , and L. J. Battan, 1982: Radar backscattering of microwaves by spongy ice spheres. J. Atmos. Sci., 39, 26232628, doi:10.1175/1520-0469(1982)039<2623:RBOMBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Caine, S., , T. P. Lane, , P. T. May, , C. Jakob, , S. T. Siems, , M. J. Manton, , and J. Pinto, 2013: Statistical assessment of tropical convection-permitting model simulations using a cell-tracking algorithm. Mon. Wea. Rev., 141, 557581, doi:10.1175/MWR-D-11-00274.1.

    • Search Google Scholar
    • Export Citation
  • Delanoe, J., , R. J. Hogan, , R. M. Forbes, , A. Bodas-Salcedo, , and T. H. M. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 20642078, doi:10.1002/qj.882.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56, 35933600, doi:10.1175/1520-0469(1999)056<3593:MOTMLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , R. J. Hogan, , P. R. A. Brown, , A. J. Illingworth, , T. W. Choularton, , and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017, doi:10.1256/qj.04.134.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., , J. M. Straka, , and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627, doi:10.1175/MWR2810.1.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., , and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452461, doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., , M. Satoh, , Y. Hagihara, , T. Kubota, , T. Matsui, , T. Nasuno, , and H. Okamoto, 2013: Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO. J. Geophys. Res. Atmos., 118, 72737292, doi:10.1002/jgrd.50564.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , P. Field, , and A. Bansemer, 2008: Exponential size distributions for snow. J. Atmos. Sci., 65, 40174031, doi:10.1175/2008JAS2583.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , K. S. S. Lim, , Y. H. Lee, , J. C. Ha, , H. W. Kim, , S. J. Ham, , and J. Dudhia, 2010: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, doi:10.1155/2010/707253.

  • Houze, R. A., , P. V. Hobbs, , P. H. Herzegh, , and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156162, doi:10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Nakajima, , A. P. Khain, , K. Saito, , T. Takemura, , and K. Suzuki, 2008: Modeling the influence of aerosols on cloud microphysical properties in the East Asia region using a mesoscale model coupled with a bin-based cloud microphysics scheme. J. Geophys. Res., 113, D14215, doi:10.1029/2007JD009774.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., , M. Satoh, , H. Miura, , and B. Mapes, 2008: Characteristics of cloud size of deep convection simulated by a global cloud resolving model over the western tropical Pacific. J. Meteor. Soc. Japan, 86A, 115, doi:10.2151/jmsj.86A.1.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., , M. Satoh, , Y. Hagihara, , H. Miura, , and J. Schmetz, 2010: Comparison of high-level clouds represented in a global cloud system–resolving model with CALIPSO/CloudSat and geostationary satellite observations. J. Geophys. Res., 115, D00H22, doi:10.1029/2009JD012371.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., , R. J. Joyce, , and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217, doi:10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A., , and B. Lynn, 2009: Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics. J. Geophys. Res., 114, D19209, doi:10.1029/2009JD011827.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., , W. A. Cooper, , I. R. Breed, , I. R. Paluch, , P. L. Smith, , and G. Vali, 1982: Microphysics. Vol. 1. Colorado Associated University Press (in association with the National Center for Atmospheric Research), 282 pp.

  • Kodama, C., , A. T. Noda, , and M. Satoh, 2012: An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators. J. Geophys. Res., 117, D12210, doi:10.1029/2011JD017317.

    • Search Google Scholar
    • Export Citation
  • Lang, S. E., , W.-K. Tao, , R. Cifelli, , W. Olson, , J. Halverson, , S. Rutledge, , and J. Simpson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164, doi:10.1175/JAS3879.1.

    • Search Google Scholar
    • Export Citation
  • Lang, S. E., , W.-K. Tao, , X. Zeng, , and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, doi:10.1175/JAS-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., , W.-K. Tao, , A. P. Khain, , J. Simpson, , and D. E. Johnson, 2009: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part II: Cloud microphysics and storm dynamics interactions. J. Atmos. Sci., 66, 2240, doi:10.1175/2008JAS2647.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , E. J. Zipser, , S. K. Krueger, , and M. A. Zulauf, 2008: Cloud-resolving modeling of deep convection during KWAJEX. Part I: Comparison to TRMM satellite and ground-based radar observations. Mon. Wea. Rev., 136, 26992712, doi:10.1175/2007MWR2258.1.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., , and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 10131035, doi:10.1175/2010MWR3293.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., , and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., , Y. Wang, , H. Wang, , Y. Zheng, , and H. Morrison, 2010: Modeling convective-stratiform precipitation processes on a mei-yu front with the Weather Research and Forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res., 115, D18117, doi:10.1029/2010JD013873.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., , A. P. Khain, , J. Dudhia, , D. Rosenfeld, , A. Pokrovsky, , and A. Seifert, 2005: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part I: Model description and first results. Mon. Wea. Rev., 133, 4458, doi:10.1175/MWR-2840.1.

    • Search Google Scholar
    • Export Citation
  • Maki, M., , T. D. Keenan, , Y. Sasaki, , and K. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40, 13931412, doi:10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , and C. D. Kummerow, 2006: Observations of tropical precipitating clouds ranging from shallow to deep convective systems. Geophys. Res. Lett., 33, L16805, doi:10.1029/2006GL026547.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , M. Satoh, , and H. Miura, 2008: A joint satellite and global cloud-resolving model analysis of a Madden-Julian oscillation event: Model diagnosis. J. Geophys. Res., 113, D17210, doi:10.1029/2008JD009986.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and Coauthors, 2010: Satellite data simulator unit: A multisensor, multispectral satellite simulator package. Bull. Amer. Meteor. Soc., 91, 16251632, doi:10.1175/2010BAMS2809.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1992: Radar reflectivity in snowfall. IEEE Trans. Geosci. Remote Sens., 30, 454461, doi:10.1109/36.142923.

  • Matsui, T., , X. Zeng, , W.-K. Tao, , H. Masunaga, , W. S. Olson, , and S. Lang, 2009: Evaluation of long-term cloud-resolving model simulations using satellite radiance observations and multifrequency satellite simulators. J. Atmos. Oceanic Technol., 26, 12611274, doi:10.1175/2008JTECHA1168.1.

    • Search Google Scholar
    • Export Citation
  • Maxwell Garnett, J. C., 1904: Colours in metal glasses and metal films. Philos. Trans. Roy. Soc. London, A203, 385420, doi:10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , M. K. Yau, , J. Mailhot, , and S. Belair, 2008: Simulation of an orographic precipitation event during IMPROVE-2. Part I: Evaluation of the control run using a triple-moment bulk microphysics scheme. Mon. Wea. Rev., 136, 38733893, doi:10.1175/2008MWR2197.1.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , T. Nasuno, , A. T. Noda, , and K. Oouchi, 2007: A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, doi:10.1126/science.1148443.

    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., , W. A. Petersen, , S. W. Nesbitt, , and D. Hudak, 2010: Evaluating the snow crystal size distribution and density assumptions within a single-moment microphysics scheme. Mon. Wea. Rev., 138, 42544267, doi:10.1175/2010MWR3485.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , J. A. Curry, , and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • NCEP, cited 2011: NCEP FNL operational model global tropospheric analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO. [Available online at http://rda.ucar.edu/datasets/ds083.2.]

  • Powell, S. W., , R. A. Houze, , A. Kumar, , and S. A. McFarlane, 2012: Comparison of simulated and observed continental tropical anvil clouds and their radiative heating profiles. J. Atmos. Sci., 69, 26622681, doi:10.1175/JAS-D-11-0251.1.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., , D. N. Rao, , K. Mohan, , and S. Raghavan, 2001: Classification of tropical precipitating systems and associated Z-R relationships. J. Geophys. Res., 106, 17 69917 711, doi:10.1029/2000JD900836.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , and Y. Matsuda, 2009: Statistics on high-cloud areas and their sensitivities to cloud microphysics using single-cloud experiments. J. Atmos. Sci., 66, 26592677, doi:10.1175/2009JAS2948.1.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Matsuno, , H. Tomita, , H. Miura, , T. Nasuno, , and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Inoue, , and H. Miura, 2010: Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators. J. Geophys. Res., 115, D00H14, doi:10.1029/2009JD012247.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Seiki, T., , and T. Nakajima, 2014: Aerosol effects of the condensation process on a convective cloud simulation. J. Atmos. Sci., 71, 833–853, doi:10.1175/JAS-D-12-0195.1.

    • Search Google Scholar
    • Export Citation
  • Seiki, T., , M. Satoh, , H. Tomita, , and T. Nakajima, 2014: Simultaneous evaluation of ice cloud microphysics and non-sphericity of the cloud optical properties using hydrometeor video sonde and radiometer sonde in-situ observations. J. Geophys. Res., doi:10.1002/2013JD021086, in press.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., , J. E. Dye, , A. Bansemer, , A. J. Heymsfield, , C. A. Grainger, , W. A. Petersen, , and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41, 97117, doi:10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , T. Nakajima, , T. Y. Nakajima, , and A. P. Khain, 2010: A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. J. Atmos. Sci., 67, 11261141, doi:10.1175/2009JAS3283.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., , J. Simpson, , and M. McCumber, 1989: An ice water saturation adjustment. Mon. Wea. Rev., 117, 231235, doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , P. R. Field, , R. M. Rasmussen, , and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., 2008a: New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteor. Soc. Japan, 86A, 121142, doi:10.2151/jmsj.86A.121.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., 2008b: A stretched icosahedral grid by a new grid transformation. J. Meteor. Soc. Japan, 86A, 107119, doi:10.2151/jmsj.86A.107.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400, doi:10.1016/j.fluiddyn.2004.03.003.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., , N. P. M. van Lipzig, , and L. Delobbe, 2011: The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium. Mon. Wea. Rev., 139, 11311147, doi:10.1175/2010MWR3481.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., , A. M. Vogelmann, , H. Morrison, , and J. A. Milbrandt, 2012: Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Wea. Rev., 140, 18831907, doi:10.1175/MWR-D-11-00120.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2013: The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 11041128, doi:10.1175/JAS-D-12-0104.1.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., , M. Xue, , Q. Cao, , and D. Dawson, 2008: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations: Model development. J. Appl. Meteor. Climatol., 47, 29832992, doi:10.1175/2008JAMC1876.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y. P., and Coauthors, 2007: Use of high-resolution satellite observations to evaluate cloud and precipitation statistics from cloud-resolving model simulations. Part I: South China Sea monsoon experiment. J. Atmos. Sci., 64, 43094329, doi:10.1175/2007JAS2281.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 22
PDF Downloads 82 82 44

Evaluation of Precipitating Hydrometeor Parameterizations in a Single-Moment Bulk Microphysics Scheme for Deep Convective Systems over the Tropical Central Pacific

View More View Less
  • 1 Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa-shi, Chiba, Japan
© Get Permissions
Restricted access

Abstract

Cloud microphysics of deep convective systems over the tropical central Pacific simulated by a cloud system–resolving model using satellite simulators are evaluated in terms of the joint histogram of cloud-top temperature and precipitation echo-top heights. A control experiment shows an underestimation of stratiform precipitation and a higher frequency of precipitating deep clouds with top heights higher than 12 km when compared with data from the Tropical Rainfall Measuring Mission. The comparison shows good agreement for horizontal distribution and statistical cloud size distributions of deep convective systems. Biases in the joint histogram are improved by changing cloud microphysics parameters of a single-moment bulk microphysics scheme. The effects of size distribution of precipitating hydrometeors are examined. Modification of the particle size distributions of rain, snow, and graupel size distributions based on observed relationships improves cloud precipitation statistics. This study implies that a single-moment bulk cloud microphysics scheme can be improved by employing comparison of satellite observations and diagnostic relationships.

Denotes Open Access content.

Corresponding author address: Woosub Roh, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, Japan. E-mail: ws-roh@aori.u-tokyo.ac.jp

Abstract

Cloud microphysics of deep convective systems over the tropical central Pacific simulated by a cloud system–resolving model using satellite simulators are evaluated in terms of the joint histogram of cloud-top temperature and precipitation echo-top heights. A control experiment shows an underestimation of stratiform precipitation and a higher frequency of precipitating deep clouds with top heights higher than 12 km when compared with data from the Tropical Rainfall Measuring Mission. The comparison shows good agreement for horizontal distribution and statistical cloud size distributions of deep convective systems. Biases in the joint histogram are improved by changing cloud microphysics parameters of a single-moment bulk microphysics scheme. The effects of size distribution of precipitating hydrometeors are examined. Modification of the particle size distributions of rain, snow, and graupel size distributions based on observed relationships improves cloud precipitation statistics. This study implies that a single-moment bulk cloud microphysics scheme can be improved by employing comparison of satellite observations and diagnostic relationships.

Denotes Open Access content.

Corresponding author address: Woosub Roh, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, Japan. E-mail: ws-roh@aori.u-tokyo.ac.jp
Save