• Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Austin, J., , and R. J. Wilson, 2006: Ensemble simulations of the decline and recovery of stratospheric ozone. J. Geophys. Res., 111, D16314, doi:10.1029/2005JD006907.

    • Search Google Scholar
    • Export Citation
  • Austin, J., , and R. J. Wilson, 2010: Sensitivity of polar ozone to sea surface temperatures and halogen amounts. J. Geophys. Res.,115, D18303, doi:10.1029/2009JD013292.

  • Baldwin, M. P., , D. B. Stephenson, , D. W. J. Thompson, , T. J. Dunkerton, , A. J. Charlton, , and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636–640, doi:10.1126/science.1087143.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , and B. A. McDaniel, 2007a: The dynamics of Northern Hemisphere stratospheric final warming events. J. Atmos. Sci., 64, 29322946, doi:10.1175/JAS3981.1.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , and B. A. McDaniel, 2007b: Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. J. Atmos. Sci., 64, 29682975, doi:10.1175/JAS3979.1.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , B. A. McDaniel, , and W. A. Robinson, 2006: Stratosphere–troposphere coupling during spring onset. J. Climate, 19, 48914901, doi:10.1175/JCLI3907.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., , D. W. J. Thompson, , and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett.,34, L21805, doi:10.1029/2007GL031200.

  • Chen, G., , and P. Zurita-Gator, 2008: The tropospheric jet response to prescribed zonal forcing in an idealized atmospheric model. J. Atmos. Sci., 65, 22542271, doi:10.1175/2007JAS2589.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., , and H. K. Roscoe, 2009: The final warming date of the Antarctic polar vortex and influences on its interannual variability. J. Climate, 22, 5809–5819, doi:10.1175/2009JCLI2865.1.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., , J. Perlwitz, , and T. A. Shaw, 2011: Observed decadal changes in downward wave coupling between the stratosphere and troposphere in the Southern Hemisphere. J. Climate, 24, 4558–4569, doi:10.1175/2011JCLI4118.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , J. M. Wallace, , V. Limpasuvan, , D. W. J. Thompson, , and J. R. Holton, 2000: Can ozone depletion and global warming interact to produce rapid climate change? Proc. Natl. Acad. Sci. USA, 97, 14121417, doi:10.1073/pnas.97.4.1412.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, doi:10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , and L. M. Polvani, 2006: Stratosphere–troposphere coupling in a relatively simple AGCM: Impact of the seasonal cycle. J. Climate, 19, 57215727, doi:10.1175/JCLI4007.1.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , A. I. Jonsson, , D. A. Plummer, , M. C. Reader, , J. F. Scinocca, , and T. G. Shepherd, 2010: Separating the dynamical effects of climate change and ozone depletion. Part I: Southern Hemisphere stratosphere. J. Climate, 23, 50025020, doi:10.1175/2010JCLI3586.1.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , T. G. Shepherd, , S. Polavarapu, , and S. R. Beagley, 2011: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802–818, doi:10.1175/JAS-D-11-0159.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , D. W. Waugh, , G. J. P. Correa, , and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., , F. Sassi, , and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , and P. F. Callaghan, 2007: Influence of planetary wave activity on the stratospheric final warming and spring ozone. J. Geophys. Res., 112, D20111, doi:10.1029/2006JD007536.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , and I. Simmonds, 2012: Half-century air temperature change above Antarctica: Observed trends and spatial reconstructions. J. Geophys. Res.,117, D16108, doi:10.1029/2012JD017885.

  • Shaw, T. A., , J. Perlwitz, , and N. Harnik, 2010: Downward wave coupling between the stratosphere and troposphere: The importance of meridional wave guiding and comparison with zonal-mean coupling. J. Climate, 23, 63656381, doi:10.1175/2010JCLI3804.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., , J. Perlwitz, , N. Harnik, , P. A. Newman, , and S. Pawson, 2011: The impact of stratospheric ozone changes on downward wave coupling in the Southern Hemisphere. J. Climate, 24, 42104229, doi:10.1175/2011JCLI4170.1.

    • Search Google Scholar
    • Export Citation
  • Sheshadri, A., , R. A. Plumb, , and D. I. V. Domeisen, 2014: Can the delay in Antarctic polar vortex breakup explain recent trends in surface westerlies? J. Atmos. Sci., 71, 566573, doi:10.1175/JAS-D-12-0343.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., , P. Hitchcock, , T. G. Shepherd, , and J. F. Scinocca, 2011: Stratospheric variability and tropospheric annular-mode timescales. Geophys. Res. Lett.,38, L20806, doi:10.1029/2011GL049304.

  • Son, S.-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, doi:10.1126/science.1155939.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2009: The impact of stratospheric ozone recovery on tropopause height trends. J. Climate, 22, 429–445, doi:10.1175/2008JCLI2215.1.

    • Search Google Scholar
    • Export Citation
  • Song, Y., , and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 17111725, doi:10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, L., , and W. A. Robinson, 2009: Downward influence of stratospheric final warming events in an idealized model. Geophys. Res. Lett.,36, L03819, doi:10.1029/2008GL036624.

  • Sun, L., , W. A. Robinson, , and G. Chen, 2011: The role of planetary waves in the downward influence of stratospheric final warming events. J. Atmos. Sci., 68, 28262843, doi:10.1175/JAS-D-11-014.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , S. Solomon, , P. J. Kushner, , M. H. England, , K. M. Grise, , and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci.,4, 741–749, doi:10.1038/ngeo1296.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Waugh, D. W., , W. J. Randel, , S. Pawson, , P. A. Newman, , and E. R. Nash, 1999: Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 104, 27 191–27 201, doi:10.1029/1999JD900795.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., , and A. J. Charlton-Perez, 2013: Final warming of the Southern Hemisphere polar vortex in high- and low-top CMIP5 models. J. Geophys. Res., 118, 25352546, doi:10.1002/jgrd.50254.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., , M. E. Gelman, , A. J. Miller, , and J. P. McCormack, 2000: An inter-hemisphere comparison of the persistent stratospheric polar vortex. Geophys. Res. Lett., 27, 11231126, doi:10.1029/1999GL011018.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 34
PDF Downloads 52 52 20

The Role of Stratospheric Polar Vortex Breakdown in Southern Hemisphere Climate Trends

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • 2 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
  • 3 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
© Get Permissions
Restricted access

Abstract

This paper investigates the connection between the delay in the final breakdown of the stratospheric polar vortex, the stratospheric final warming (SFW), and Southern Hemisphere climate trends. The authors first analyze Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) and three climate model outputs with different climate forcings. Climate trends appear when there is a delay in the timing of SFWs. When regressed onto the SFW dates (which reflect the anomaly when the SFW is delayed for one standard deviation of its onset dates), the anomaly pattern bears a resemblance to the observed climate trends, for all the model outputs, even without any trends. This suggests that the stratospheric and tropospheric circulations are organized by the timing of SFWs in both the interannual time scale and climate trends because of external forcings.

The authors further explore the role of the SFW using a simplified dynamical model in which the ozone depletion is mimicked by a springtime polar stratospheric cooling. The responses of zonal-mean atmospheric circulation, including zonal wind, temperature, and poleward edge of the Hadley cell and the Ferrel cell, are similar to the observed climate trends. The authors divide the years into those in which the SFW is delayed and those in which it is not. The responses for the years in which the SFW is delayed are very similar to the overall response, while the stratosphere is only characterized by the localized cooling for those years in which the SFW is not delayed, with no subsequent downward influence into the troposphere. This suggests that, in order to affect the troposphere, ozone depletion must first delay the SFW so as to induce a deep response in planetary wave drag and the associated eddy-driven circulation.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Lantao Sun, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. E-mail: lantao@ucar.edu

Abstract

This paper investigates the connection between the delay in the final breakdown of the stratospheric polar vortex, the stratospheric final warming (SFW), and Southern Hemisphere climate trends. The authors first analyze Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) and three climate model outputs with different climate forcings. Climate trends appear when there is a delay in the timing of SFWs. When regressed onto the SFW dates (which reflect the anomaly when the SFW is delayed for one standard deviation of its onset dates), the anomaly pattern bears a resemblance to the observed climate trends, for all the model outputs, even without any trends. This suggests that the stratospheric and tropospheric circulations are organized by the timing of SFWs in both the interannual time scale and climate trends because of external forcings.

The authors further explore the role of the SFW using a simplified dynamical model in which the ozone depletion is mimicked by a springtime polar stratospheric cooling. The responses of zonal-mean atmospheric circulation, including zonal wind, temperature, and poleward edge of the Hadley cell and the Ferrel cell, are similar to the observed climate trends. The authors divide the years into those in which the SFW is delayed and those in which it is not. The responses for the years in which the SFW is delayed are very similar to the overall response, while the stratosphere is only characterized by the localized cooling for those years in which the SFW is not delayed, with no subsequent downward influence into the troposphere. This suggests that, in order to affect the troposphere, ozone depletion must first delay the SFW so as to induce a deep response in planetary wave drag and the associated eddy-driven circulation.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Lantao Sun, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. E-mail: lantao@ucar.edu
Save