• Andrejczuk, M., , W. W. Grabowski, , S. P. Malinowski, , and P. K. Smolarkiewicz, 2004: Numerical simulation of cloud–clear air interfacial mixing. J. Atmos. Sci., 61, 17261739, doi:10.1175/1520-0469(2004)061<1726:NSOCAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., , W. W. Grabowski, , S. P. Malinowski, , and P. K. Smolarkiewicz, 2006: Numerical simulation on cloud–clear air interfacial mixing: Effects on cloud microphysics. J. Atmos. Sci., 63, 32043225, doi:10.1175/JAS3813.1.

    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., , W. W. Grabowski, , S. P. Malinowski, , and P. K. Smolarkiewicz, 2009: Numerical simulation of cloud–clear air interfacial mixing: Homogeneous versus inhomogeneous mixing. J. Atmos. Sci., 66, 24932500, doi:10.1175/2009JAS2956.1.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., , R. G. Corbin, , and J. Latham, 1980: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106, 581598, doi:10.1002/qj.49710644914.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., , R. E. Breidenthal, , T. W. Choularton, , and J. Latham, 1984: The effects of turbulent mixing in clouds. J. Atmos. Sci., 41, 299304, doi:10.1175/1520-0469(1984)041<0299:TEOTMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bewley, G. P., , E.-W. Saw, , and E. Bodenschatz, 2013: Observation of the sling effect. New J. Phys.,15, 083051, doi:10.1088/1367-2630/15/8/083051.

  • Broadwell, J. E., , and R. E. Breidenthal, 1982: A simple model of mixing and chemical reaction in a turbulent shear. J. Fluid Mech., 125, 397410, doi:10.1017/S0022112082003401.

    • Search Google Scholar
    • Export Citation
  • Burnet, F., , and J.-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011, doi:10.1175/JAS3928.1.

    • Search Google Scholar
    • Export Citation
  • Calzavarini, E., , C. R. Doering, , J. D. Gibbon, , D. Lohse, , A. Tanabe, , and F. Toschi, 2006: Exponentially growing solutions in homogeneous Rayleigh-Bénard convection. Phys. Rev. E,73, 035301(R), doi:10.1103/PhysRevE.73.035301.

  • de Lozar, A., , and J. P. Mellado, 2014: Cloud droplets in a bulk formulation and its application for the buoyancy reversal instability. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2234, in press.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, doi:10.1002/qj.1959.

    • Search Google Scholar
    • Export Citation
  • Falkovich, G., , and A. Pumir, 2007: Sling effect in collisions of water droplets in turbulent clouds. J. Atmos. Sci., 64, 44974505, doi:10.1175/2007JAS2371.1.

    • Search Google Scholar
    • Export Citation
  • Ferziger, J. H., , and M. Perić, 2001: Computational Methods in Fluid Dynamics.Springer, 423 pp.

  • Gerber, H. E., , G. M. Frick, , J. B. Jensen, , and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A, 87106, doi:10.2151/jmsj.86A.87.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2007: Representation of turbulent mixing and buoyancy reversal in bulk cloud models. J. Atmos. Sci., 64, 36663680, doi:10.1175/JAS4047.1.

    • Search Google Scholar
    • Export Citation
  • Heus, T., , and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, doi:10.1175/2007JAS2322.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., , and M. B. Baker, 1989: A simple model of droplet spectral evolution during turbulent mixing. J. Atmos. Sci., 46, 28122829, doi:10.1175/1520-0469(1989)046<2812:ASMODS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., , P. H. Austin, , M. B. Baker, , and A. M. Blyth, 1985: Turbulent mixing, spectral evolution and dynamics in warm cumulus cloud. J. Atmos. Sci., 42, 173192, doi:10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., 2009: Simple approximations for condensational growth. Environ. Res. Lett.,4, 015005, doi:10.1088/1748-9326/4/1/015005.

  • Krueger, S. K., , C.-W. Su, , and P. A. Murtry, 1997: Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci., 54, 26972712, doi:10.1175/1520-0469(1997)054<2697:MEAFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, B., , F. Janetzko, , J. Schumacher, , and R. A. Shaw, 2012: Extreme responses of a coupled scalar–particle system during turbulent mixing. New J. Phys.,14, 115020, doi:10.1088/1367-2630/14/11/115020.

  • Kumar, B., , J. Schumacher, , and R. A. Shaw, 2013: Cloud microphysical effects of turbulent mixing and entrainment. Theor. Comput. Fluid Dyn., 27, 361376, doi:10.1007/s00162-012-0272-z.

    • Search Google Scholar
    • Export Citation
  • Lanotte, A. S., , A. Seminara, , and F. Toschi, 2009: Cloud droplet growth by condensation in homogeneous isotropic turbulence. J. Atmos. Sci., 66, 16851697, doi:10.1175/2008JAS2864.1.

    • Search Google Scholar
    • Export Citation
  • Latham, J., , and R. L. Reed, 1977: Laboratory studies of the effects of mixing on the evolution of cloud droplet spectra. Quart. J. Roy. Meteor. Soc., 103, 297306, doi:10.1002/qj.49710343607.

    • Search Google Scholar
    • Export Citation
  • Lehmann, K., , H. Siebert, , and R. A. Shaw, 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 36413659, doi:10.1175/2009JAS3012.1.

    • Search Google Scholar
    • Export Citation
  • Lu, C., , Y. Liu, , and S. Niu, 2011: Examination of turbulent entrainment-mixing mechanisms using a combined approach. J. Geophys. Res.,116, D20207, doi:10.1029/2011JD015944.

  • Lu, C., , Y. Liu, , S. Niu, , S. K. Krueger, , and T. Wagner, 2013: Exploring parameterization for turbulent entrainment-mixing processes in clouds. J. Geophys. Res. Atmos.,118, 185–194, doi:10.1029/2012JD018464.

  • Malinowski, S. P., , and I. Zawadzki, 1993: On the surface of clouds. J. Atmos. Sci., 50, 513, doi:10.1175/1520-0469(1993)050<0005:OTSOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malinowski, S. P., , M. Andrejczuk, , W. W. Grabowski, , P. Korczyk, , T. A. Kowalewski, , and P. K. Smolarkiewicz, 2008: Laboratory and modeling studies of cloud–clear air interfacial mixing: Anisotropy of small-scale turbulence due to evaporative cooling. New J. Phys.,10, 075020, doi:10.1088/1367-2630/10/7/075020.

  • Rogers, R. R., , and M. K. Yau, 1989: A Short Course in Cloud Physics.Pergamon Press, 293 pp.

  • Schumacher, J., , K. R. Sreenivasan, , and V. Yakhot, 2007: Asymptotic exponents from low-Reynolds-number flows. New J. Phys., 9, 89, doi:10.1088/1367-2630/9/4/089.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., and Coauthors, 2013: The fine-scale structure of the trade wind cumuli over Barbados: An introduction to the CARRIBA project. Atmos. Chem. Phys., 13, 10 06110 077, doi:10.5194/acp-13-10061-2013.

    • Search Google Scholar
    • Export Citation
  • Spyksma, K., , P. Bartello, , and M. K. Yau, 2006: A Boussinesq moist turbulence model. J. Turbul., 7 (32), 124, doi:10.1080/14685240600577865.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., , R. Ramshankar, , and C. Meneveau, 1989: Mixing, entrainment and fractal dimension of surfaces in turbulent flow. Proc. Roy. Soc. London, 421, 79108, doi:10.1098/rspa.1989.0004.

    • Search Google Scholar
    • Export Citation
  • Su, C.-W., , S. K. Krueger, , P. A. McMurtry, , and P. H. Austin, 1998: Linear eddy modeling of droplet spectra evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48, 4158, doi:10.1016/S0169-8095(98)00039-8.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., , M. K. Yau, , and W. W. Grabowski, 2001: Microscopic approach to cloud droplet growth by condensation. Part I: Model description and results without turbulence. J. Atmos. Sci., 58, 19451964, doi:10.1175/1520-0469(2001)058<1945:MATCDG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., , M. K. Yau, , P. Bartello, , and W. W. Grabowski, 2002: Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59, 34213435, doi:10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 14
PDF Downloads 43 43 13

Lagrangian Mixing Dynamics at the Cloudy–Clear Air Interface

View More View Less
  • 1 Max Planck Institute für Meteorologie, Hamburg, Germany
  • 2 Technische Universität Ilmenau, Ilmenau, Germany
  • 3 Department of Physics, Michigan Technological University, Houghton, Michigan
© Get Permissions
Restricted access

Abstract

The entrainment of clear air and its subsequent mixing with a filament of cloudy air, as occurs at the edge of a cloud, is studied in three-dimensional direct numerical simulations that combine the Eulerian description of the turbulent velocity, temperature, and vapor fields with a Lagrangian cloud droplet ensemble. Forced and decaying turbulence is considered, such as when the dynamics around the filament is driven by larger-scale eddies or during the final period of the life cycle of a cloud. The microphysical response depicted in nd − 〈r3〉 space (where nd and r are droplet number density and radius, respectively) shows characteristics of both homogeneous and inhomogeneous mixing, depending on the Damköhler number. The transition from inhomogeneous to homogeneous mixing leads to an offset of the homogeneous mixing curve to larger dilution fractions. The response of the system is governed by the smaller of the single droplet evaporation time scale and the bulk phase relaxation time scale. Variability within the nd − 〈r3〉 space increases with decreasing sample volume, especially during the mixing transients. All of these factors have implications for the interpretation of measurements in clouds. The qualitative mixing behavior changes for forced versus decaying turbulence, with the latter yielding remnant patches of unmixed cloud and stronger fluctuations. Buoyancy due to droplet evaporation is observed to play a minor role in the mixing for the present configuration. Finally, the mixing process leads to the transient formation of a pronounced nearly exponential tail of the probability density function of the Lagrangian supersaturation, and a similar tail emerges in the droplet size distribution under inhomogeneous conditions.

Corresponding author address: Bipin Kumar, Max Planck-Institut für Meteorologie, Bundesstrasse 53, D-20146 Hamburg, Germany. E-mail: bipin.kumar@mpimet.mpg.de

Abstract

The entrainment of clear air and its subsequent mixing with a filament of cloudy air, as occurs at the edge of a cloud, is studied in three-dimensional direct numerical simulations that combine the Eulerian description of the turbulent velocity, temperature, and vapor fields with a Lagrangian cloud droplet ensemble. Forced and decaying turbulence is considered, such as when the dynamics around the filament is driven by larger-scale eddies or during the final period of the life cycle of a cloud. The microphysical response depicted in nd − 〈r3〉 space (where nd and r are droplet number density and radius, respectively) shows characteristics of both homogeneous and inhomogeneous mixing, depending on the Damköhler number. The transition from inhomogeneous to homogeneous mixing leads to an offset of the homogeneous mixing curve to larger dilution fractions. The response of the system is governed by the smaller of the single droplet evaporation time scale and the bulk phase relaxation time scale. Variability within the nd − 〈r3〉 space increases with decreasing sample volume, especially during the mixing transients. All of these factors have implications for the interpretation of measurements in clouds. The qualitative mixing behavior changes for forced versus decaying turbulence, with the latter yielding remnant patches of unmixed cloud and stronger fluctuations. Buoyancy due to droplet evaporation is observed to play a minor role in the mixing for the present configuration. Finally, the mixing process leads to the transient formation of a pronounced nearly exponential tail of the probability density function of the Lagrangian supersaturation, and a similar tail emerges in the droplet size distribution under inhomogeneous conditions.

Corresponding author address: Bipin Kumar, Max Planck-Institut für Meteorologie, Bundesstrasse 53, D-20146 Hamburg, Germany. E-mail: bipin.kumar@mpimet.mpg.de
Save