• Atlas, D., , K. R. Hardy, , R. Wexler, , and R. J. Boucher, 1963: On the origin of hurricane spiral bands. Geofis. Int., 3, 123132.

  • Barnes, G. M., , E. J. Zipser, , D. P. Jorgensen, , and F. D. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21252137, doi:10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., , M. A. LeMone, , G. J. Stossmeister, , and J. F. Gamache, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev., 119, 776794, doi:10.1175/1520-0493(1991)119<0776:ACCIAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., , and M. T. Montgomery, 2010: Sheared deep vortical convection in pre-depression Hagupit during TCS08. Geophys. Res. Lett., 37, L06802, doi:10.1029/2009GL042313.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., , W.-C. Lee, , C. A. Wolff, , and H. Cai, 2013: A solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 25092528, doi:10.1175/JAMC-D-12-0283.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, doi:10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , G. T. Marx, , and M. H. Jain, 1987: Formation of mesoscale lines of precipitation: Nonsevere squall lines in Oklahoma during the spring. Mon. Wea. Rev., 115, 27192727, doi:10.1175/1520-0493(1987)115<2719:FOMLOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bogner, P., , G. Barnes, , and J. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192207, doi:10.1175/1520-0434(2000)015<0192:CIASFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosart, B. L., , W.-C. Lee, , and R. M. Wakimoto, 2002: Procedures to improve the accuracy of airborne Doppler radar data. J. Atmos. Oceanic Technol., 19, 322339, doi:10.1175/1520-0426-19.3.322.

    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., , C.-C. Wu, , P.-H. Lin, , S. D. Aberson, , M. Weissmann, , F. Harnisch, , and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 17281743, doi:10.1175/2010MWR3582.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., , and R. A. Houze, 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 32693293, doi:10.1175/2009MWR2827.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., , and R. A. Houze, 2013a: Convective-scale variations in the inner-core rainbands of a tropical cyclone. J. Atmos. Sci., 70, 504523, doi:10.1175/JAS-D-12-0134.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., , and R. A. Houze, 2013b: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 18911911, doi:10.1175/JAS-D-12-0245.1.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , T. L. Gardner, , M. C. Link, , and K. C. Smith, 2012: Surface cold pools in the outer rainbands of Tropical Storm Hanna (2008) near landfall. Mon. Wea. Rev., 140, 471491, doi:10.1175/MWR-D-11-00099.1.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., , and P. A. Harr, 2008: Tropical Cyclone Structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci.,44, 209–231.

  • Gamache, J. F., 1997: Evaluation of a fully-three dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422–423.

  • Hence, D. A., , and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213232, doi:10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, doi:10.1175/2009MWR2989.1.

  • Houze, R. A., Jr., and Coauthors, 2006: The hurricane rainband and intensity change experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 15031521, doi:10.1175/BAMS-87-11-1503.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , S. S. Chen, , B. F. Smull, , W.-C. Lee, , and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239, doi:10.1126/science.1135650.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , W.-C. Lee, , and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800, doi:10.1175/2009MWR2727.1.

    • Search Google Scholar
    • Export Citation
  • Lee, T. F., , F. J. Turk, , J. Hawkins, , and K. Richardson, 2002: Interpretation of TRMM TMI images of tropical cyclones. Earth Interact., 6, doi:10.1175/1087-3562(2002)006<0001:IOTTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leise, J. A., 1981: A multidimensional scale-telescoped filter and data extension package. NOAA Tech. Memo. ERL WPL-82, 20 pp.

  • Li, Q., , and Y. Wang, 2012: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140, 27822805, doi:10.1175/MWR-D-11-00237.1.

    • Search Google Scholar
    • Export Citation
  • May, P. T., 1996: The organization of convection in the rainbands of Tropical Cyclone Laurence. Mon. Wea. Rev., 124, 807815, doi:10.1175/1520-0493(1996)124<0807:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , D. M. Romps, , D. Vollaro, , and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 24522463, doi:10.1175/JAS-D-11-0254.1.

    • Search Google Scholar
    • Export Citation
  • Oye, R., , C. Mueller, , and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938, doi:10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , F. D. Marks, , and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. D. Eastin, , and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., , S. Lorsolo, , P. D. Reasor, , J. F. Gamache, , and F. D. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 7799, doi:10.1175/MWR-D-10-05075.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roux, F., , V. Marécal, , and D. Hauser, 1993: The 12/13 January 1988 narrow cold-frontal rainband observed during MFDP/FRONTS 87. Part I: Kinematics and thermodynamics. J. Atmos. Sci., 50, 951974, doi:10.1175/1520-0469(1993)050<0951:TJNCFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , W. H. Schubert, , B. D. McNoldy, , and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340, doi:10.1175/JAS3595.1.

    • Search Google Scholar
    • Export Citation
  • Sawada, M., , and T. Iwasaki, 2010: Impacts of evaporation from raindrops on tropical cyclones. Part II: Features of rainbands and asymmetric structure. J. Atmos. Sci., 67, 8496, doi:10.1175/2009JAS3195.1.

    • Search Google Scholar
    • Export Citation
  • Sheets, R. C., 1969: Some mean hurricane soundings. J. Appl. Meteor., 8, 134146, doi:10.1175/1520-0450(1969)008<0134:SMHS>2.0.CO;2.

  • Simpson, R., , R. Anthes, , M. Garstang, , and J. Simpson, 2003: Hurricane! Coping with Disaster: Progress and Challenges since Galveston, 1900. Amer. Geophys. Union, 360 pp.

  • Skwira, G. D., , J. L. Schroeder, , and R. E. Peterson, 2005: Surface observations of landfalling hurricane rainbands. Mon. Wea. Rev., 133, 454465, doi:10.1175/MWR-2866.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , H. M. Goodman, , and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Testud, J., , P. H. Hildebrand, , and W.-C. Lee, 1995: A procedure to correct airborne Doppler radar data for navigation errors using the echo returned from the earth’s surface. J. Atmos. Oceanic Technol., 12, 800820, doi:10.1175/1520-0426(1995)012<0800:APTCAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 11581181, doi:10.1175/2007JAS2426.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and R. Rotunno, 2004: A theory for strong long-lived squall lines revisited. J. Atmos. Sci., 61, 361382, doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183191.

  • Willoughby, H. E., , F. D. Marks, , and R. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, doi:10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., , and C. S. Velden, 2007: MIMIC: A new approach to visualizing satellite microwave imagery of tropical cyclones. Bull. Amer. Meteor. Soc., 88, 11871196, doi:10.1175/BAMS-88-8-1187.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787790, doi:10.1175/BAMS-86-6-787.

    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., , and C.-L. Tsai, 2010: Surface pressure features of landfalling typhoon rainbands and their possible causes. J. Atmos. Sci., 67, 28932911, doi:10.1175/2010JAS3312.1.

    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., , and Y. Chen, 2011: Surface fluctuations associated with tropical cyclone rainbands observed near Taiwan during 2000–08. J. Atmos. Sci., 68, 15681585, doi:10.1175/2011JAS3725.1.

    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., , and C.-L. Tsai, 2013: Structural and surface features of arc-shaped radar echoes along an outer tropical cyclone rainband. J. Atmos. Sci., 70, 5672, doi:10.1175/JAS-D-12-090.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 1
PDF Downloads 19 19 2

A Squall-Line-Like Principal Rainband in Typhoon Hagupit (2008) Observed by Airborne Doppler Radar

View More View Less
  • 1 Key Laboratory for Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, Nanjing, China
  • 2 National Center for Atmospheric Research, Boulder, Colorado
  • 3 University of Hawai’i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

This study examines the structure and dynamics of Typhoon Hagupit’s (2008) principal rainband using airborne radar and dropsonde observations. The convection in Hagupit’s principal rainband was organized into a well-defined line with trailing stratiform precipitation on the inner side. Individual convective cells had intense updrafts and downdrafts and were aligned in a wavelike pattern along the line. The line-averaged vertical cross section possessed a slightly inward-tilting convective core and two branches of low-level inflow feeding the convection. The result of a thermodynamic retrieval showed a pronounced cold pool behind the convective line. The horizontal and vertical structures of this principal rainband show characteristics that are different than the existing conceptual model and are more similar to squall lines and outer rainbands.

The unique convective structure of Hagupit’s principal rainband was associated with veering low-level vertical wind shear and large convective instability in the environment. A quantitative assessment of the cold pool strength showed that it was quasi balanced with that of the low-level vertical wind shear. The balanced state and the structural characteristics of convection in Hagupit’s principal rainband were dynamically consistent with the theory of cold pool dynamics widely applied to strong and long-lived squall lines. The analyses suggest that cold pool dynamics played a role in determining the principal rainband structure in addition to storm-scale vortex dynamics.

Corresponding author address: Wen-Chau Lee, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: wenchau@ucar.edu

Abstract

This study examines the structure and dynamics of Typhoon Hagupit’s (2008) principal rainband using airborne radar and dropsonde observations. The convection in Hagupit’s principal rainband was organized into a well-defined line with trailing stratiform precipitation on the inner side. Individual convective cells had intense updrafts and downdrafts and were aligned in a wavelike pattern along the line. The line-averaged vertical cross section possessed a slightly inward-tilting convective core and two branches of low-level inflow feeding the convection. The result of a thermodynamic retrieval showed a pronounced cold pool behind the convective line. The horizontal and vertical structures of this principal rainband show characteristics that are different than the existing conceptual model and are more similar to squall lines and outer rainbands.

The unique convective structure of Hagupit’s principal rainband was associated with veering low-level vertical wind shear and large convective instability in the environment. A quantitative assessment of the cold pool strength showed that it was quasi balanced with that of the low-level vertical wind shear. The balanced state and the structural characteristics of convection in Hagupit’s principal rainband were dynamically consistent with the theory of cold pool dynamics widely applied to strong and long-lived squall lines. The analyses suggest that cold pool dynamics played a role in determining the principal rainband structure in addition to storm-scale vortex dynamics.

Corresponding author address: Wen-Chau Lee, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: wenchau@ucar.edu
Save