• Arblaster, J. M., , and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 28962905, doi:10.1175/JCLI3774.1.

    • Search Google Scholar
    • Export Citation
  • Bals-Elsholz, T. M., , E. H. Atallah, , L. F. Bosart, , T. A. Wasula, , M. J. Cempa, , and A. R. Lupo, 2001: The wintertime southern hemisphere split jet: Structure, variability, and evolution. J. Climate, 14, 41914215, doi:10.1175/1520-0442(2001)014<4191:TWSHSJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and L. M. Polvani, 2013: Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., , Y. H. Lee, , and J. M. Wallace, 1984: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961979, doi:10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., , E. Shuckburgh, , J.-B. Sallee, , Z. Wang, , A. J. S. Meijers, , N. Bruneau, , T. Phillips, , and L. J. Wilcox, 2013: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence. J. Geophys. Res., 118, 547–562, doi:10.1002/jgrd.50153.

    • Search Google Scholar
    • Export Citation
  • Brandefelt, J., , and H. Körnich, 2008: Northern Hemisphere stationary waves in future climate projections. J. Climate, 21, 63416353, doi:10.1175/2008JCLI2373.1.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., , B. Hoskins, , and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, doi:10.1175/2009JAS3078.1.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., , B. Hoskins, , and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 17841805, doi:10.1175/2011JAS3674.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., , D. W. J. Thompson, , and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., , L. C. Shaffrey, , and K. I. Hodges, 2011: Northern Hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model. J. Climate, 24, 53365351, doi:10.1175/2011JCLI4181.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , Y. Guo, , and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , J. Lu, , and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, doi:10.1175/2008JCLI2306.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , J. Lu, , and L. Sun, 2013: Delineating the eddy–zonal flow interaction in the atmospheric circulation response to climate forcing: Uniform SST warming in an idealized aquaplanet model. J. Atmos. Sci., 70, 22142233, doi:10.1175/JAS-D-12-0248.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., , J. M. Wallace, , and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513, doi:10.1175/JAS3486.1.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Freitas, A. C. V., , and V. B. Rao, 2013: Global changes in propagation of stationary waves in a warming scenario. Quart. J. Roy. Meteor. Soc., 140, 364–383, doi:10.1002/qj.2151.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett.,33, L06701, doi:10.1029/2005GL025332.

  • Gillett, N. P., , and J. C. Fyfe, 2013: Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett., 40, 1189–1193, doi:10.1002/grl.50249.

    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., , L. C. Shaffrey, , T. J. Woollings, , G. Zappa, , and K. I. Hodges, 2012: How large are projected 21st century storm track changes? Geophys. Res. Lett., 39, L18707, doi:10.1029/2012GL052873.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , M. Ting, , and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , I. N. James, , and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., , and B. J. Hoskins, 2004: The zonal asymmetry of the Southern Hemisphere winter storm track. J. Climate, 17, 48824892, doi:10.1175/JCLI-3232.1.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., , M. Ting, , and P. J. Kushner, 2004: The global stationary wave response to climate change in a coupled GCM. J. Climate, 17, 540556, doi:10.1175/1520-0442(2004)017<0540:TGSWRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., , and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 25962613, doi:10.1175/JAS-D-12-082.1.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , S. M. Dean, , J. A. Renwick, , and G. K. Vallis, 2010: A robust increase in the eddy length scale in the simulation of future climates. Geophys. Res. Lett., 37, L03806, doi:10.1029/2009GL041615.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , G. K. Vallis, , S. M. Dean, , and J. A. Renwick, 2011: Can the increase in the eddy length scale under global warming cause the poleward shift of the jet streams? J. Climate, 24, 37643780, doi:10.1175/2010JCLI3738.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. W. Frierson, 2008: Response of the zonal-mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , T. G. Shepherd, , J. F. Scinocca, , D. A. Plummer, , M. Sigmond, , A. I. Jonsson, , and M. C. Reader, 2011: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24, 18501868, doi:10.1175/2010JCLI3958.1.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., , G. A. Schmidt, , and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report Models. J. Geophys. Res., 111, D18101, doi:10.1029/2005JD006323.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., and Coauthors, 2010: Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models. J. Geophys. Res., 115, D00M03, doi:10.1029/2009JD013347.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , B. Langenbrunner, , J. E. Meyerson, , A. Hall, , and N. Berg, 2013: California winter precipitation change under global warming in the Coupled Model Intercomparison Project 5 ensemble. J. Climate, 26, 62386256, doi:10.1175/JCLI-D-12-00514.1.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time-mean flow. J. Atmos. Sci., 43, 16571678, doi:10.1175/1520-0469(1986)043<1657:TDPOTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , D. W. Waugh, , J. P. Correa, , and S. W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., , and B. G. Liepert, 2007: Annular modes and Hadley cell expansion under global warming. Geophys. Res. Lett., 34, L22701, doi:10.1029/2007GL031243.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, doi:10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riviere, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, doi:10.1175/2011JAS3641.1.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., , and B. J. Hoskins, 1984: Spatial smoothing on the sphere. Mon. Wea. Rev., 112, 25242529, doi:10.1175/1520-0493(1984)112<2524:SSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., , and I. G. Watterson, 1984: Stationary Rossby wave propagation through easterly layers. J. Atmos. Sci., 41, 20692083, doi:10.1175/1520-0469(1984)041<2069:SRWPTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, doi:10.1146/annurev.earth.34.031405.125144.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Naik, , and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, doi:10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , H. Liu, , N. Henderson, , I. Simpson, , C. Kelley, , T. Shaw, , Y. Kushnir, , and M. Ting, 2014a: Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Climate, doi:10.1175/JCLI-D-13-00446.1, in press.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2014: On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci., 71, 17241746, doi:10.1175/JAS-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., , M. Blackburn, , and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 13471365, doi:10.1175/2008JAS2758.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stephenson, D. B., , and I. M. Held, 1993: GCM response of northern winter stationary waves and storm tracks to increasing amounts of carbon dioxide. J. Climate, 6, 18591870, doi:10.1175/1520-0442(1993)006<1859:GRONWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., , and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, doi:10.1029/2012GL052810.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and M. L. Blackmon, 1983: Observations of low-frequency atmospheric variability. Large-Scale Dynamical Processes in the Atmosphere, B. Hoskins, Ed., Academic Press, 55–91.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , and P. J. Kushner, 2011: Diagnosing the stratosphere-troposphere stationary wave response to climate change in a general circulation model. Geophys. Res. Lett., 116, D16113, doi:10.1029/2010JD015473.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., , A. J. Charlton-Perez, , and L. J. Gray, 2012: Trends in Austral jet position in ensembles of high- and low-top CMIP models. J. Geophys. Res., 117, D13115, doi:10.1029/2012JD017597.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., 2010: Dynamical influences on European climate: An uncertain future. Philos. Trans. Roy. Soc. London, 368, 37333756, doi:10.1098/rsta.2010.0040.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , and M. Blackburn, 2012: The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J. Climate, 25, 886902, doi:10.1175/JCLI-D-11-00087.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., , R. Seager, , M. Ting, , N. Naik, , and T. A. Shaw, 2012: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part I: Model experiments and transient thermal response in the troposphere. J. Climate, 25, 28622879, doi:10.1175/JCLI-D-11-00284.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., , R. Seager, , T. A. Shaw, , M. Ting, , and N. Naik, 2013: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part II: Atmospheric transient adjustment and its dynamics. J. Climate, 26, 918935, doi:10.1175/JCLI-D-12-00104.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 208 50
PDF Downloads 158 158 42

A Diagnosis of the Seasonally and Longitudinally Varying Midlatitude Circulation Response to Global Warming

View More View Less
  • 1 Lamont-Doherty Earth Observatory, Columbia University, New York, New York
© Get Permissions
Restricted access

Abstract

Zonal-mean or basin-mean analyses often conclude that the midlatitude circulation will undergo a poleward shift with global warming. In this study, the models from phase 5 of the Coupled Model Intercomparison Project are used to provide a detailed examination of midlatitude circulation change as a function of longitude and season. The two-dimensional vertically integrated momentum budget is used to identify the dominant terms that maintain the anomalous surface wind stress, thereby allowing a distinction between features that are maintained by high-frequency eddies and those that involve changes in the lower-frequency or stationary flow.

In the zonal mean, in each season and hemisphere there is a poleward shifting of the midlatitude surface wind stress, primarily maintained by high-frequency transient eddies. This is not necessarily the case locally. In the Southern Hemisphere, for the most part, the interpretation of the response as being a high-frequency eddy-driven poleward shifting of the midlatitude westerlies holds true. The Northern Hemisphere is considerably more complex with only the fall months showing a robust poleward shift of both the Atlantic and Pacific jets. During the winter months the jet in the east Pacific actually shifts equatorward and the Atlantic jet strengthens over Europe. An important role for altered climatological stationary waves in these responses is found. This motivates future work that should focus on zonal asymmetries and stationary wave changes, as well as the changes in high-frequency transients that bring about the poleward shifting of the westerlies in the zonal mean.

Lamont-Doherty Earth Observatory Contribution Number 7780.

Corresponding author address: Isla Simpson, Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, P.O. Box 1000, Route 9W, Palisades, NY 10964-1000. E-mail: isla@ldeo.columbia.edu

Abstract

Zonal-mean or basin-mean analyses often conclude that the midlatitude circulation will undergo a poleward shift with global warming. In this study, the models from phase 5 of the Coupled Model Intercomparison Project are used to provide a detailed examination of midlatitude circulation change as a function of longitude and season. The two-dimensional vertically integrated momentum budget is used to identify the dominant terms that maintain the anomalous surface wind stress, thereby allowing a distinction between features that are maintained by high-frequency eddies and those that involve changes in the lower-frequency or stationary flow.

In the zonal mean, in each season and hemisphere there is a poleward shifting of the midlatitude surface wind stress, primarily maintained by high-frequency transient eddies. This is not necessarily the case locally. In the Southern Hemisphere, for the most part, the interpretation of the response as being a high-frequency eddy-driven poleward shifting of the midlatitude westerlies holds true. The Northern Hemisphere is considerably more complex with only the fall months showing a robust poleward shift of both the Atlantic and Pacific jets. During the winter months the jet in the east Pacific actually shifts equatorward and the Atlantic jet strengthens over Europe. An important role for altered climatological stationary waves in these responses is found. This motivates future work that should focus on zonal asymmetries and stationary wave changes, as well as the changes in high-frequency transients that bring about the poleward shifting of the westerlies in the zonal mean.

Lamont-Doherty Earth Observatory Contribution Number 7780.

Corresponding author address: Isla Simpson, Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, P.O. Box 1000, Route 9W, Palisades, NY 10964-1000. E-mail: isla@ldeo.columbia.edu
Save