• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Ayarzagüena, B., , and E. Serrano, 2009: Monthly characterization of the tropospheric circulation over the Euro-Atlantic area in relation with the timing of stratospheric final warmings. J. Climate, 22, 63136324, doi:10.1175/2009JCLI2913.1.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , D. B. Stephenson, , D. W. J. Thompson, , T. J. Dunkerton, , A. J. Charlton, , and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, doi:10.1126/science.1087143.

    • Search Google Scholar
    • Export Citation
  • Bancalá, S., , K. Krüger, , and M. Giorgetta, 2012: The preconditioning of major sudden stratospheric warmings. J. Geophys. Res., 117, D04101, doi:10.1029/2011JD016769.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , and B. A. McDaniel, 2007a: Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. J. Atmos. Sci., 64, 29682974, doi:10.1175/JAS3979.1.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , and B. A. McDaniel, 2007b: The dynamics of Northern Hemisphere stratospheric final warming events. J. Atmos. Sci., 64, 29322946, doi:10.1175/JAS3981.1.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , B. A. McDaniel, , and W. A. Robinson, 2006: Stratosphere–troposphere coupling during spring onset. J. Climate, 19, 48914901, doi:10.1175/JCLI3907.1.

    • Search Google Scholar
    • Export Citation
  • Cai, M., , and R. C. Ren, 2007: Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J. Atmos. Sci., 64, 18801901, doi:10.1175/JAS3922.1.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., , and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., , and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345348, doi:10.1029/1998GL900321.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., , and J. Jones, 2011: Tropospheric precursors and stratospheric warmings. J. Climate, 24, 65626572, doi:10.1175/2011JCLI4160.1.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., , and P. J. Kushner, 2011: The role of linear interference in the annular mode response to tropical SST forcing. J. Climate, 24, 778794, doi:10.1175/2010JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , D. L. Hartmann, , and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, doi:10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., , and H. K. Roscoe, 2009: The final warming date of the Antarctic polar vortex and influences on its interannual variability. J. Climate, 22, 58095819, doi:10.1175/2009JCLI2865.1.

    • Search Google Scholar
    • Export Citation
  • Harada, Y., , A. Goto, , H. Hasegawa, , N. Fujikawa, , H. Naoe, , and T. Hirooka, 2010: A major stratospheric sudden warming event in January 2009. J. Atmos. Sci., 67, 20522069, doi:10.1175/2009JAS3320.1.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., and Coauthors, 2011: Improved predictability of the troposphere using stratospheric final warmings. J. Geophys. Res., 116, D18113, doi:10.1029/2011JD015914.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., , T. G. Shepherd, , and G. L. Manney, 2013a: Statistical characterization of Arctic polar-night jet oscillation events. J. Climate, 26, 20962116, doi:10.1175/JCLI-D-12-00202.1.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., , T. G. Shepherd, , M. Taguchi, , S. Yoden, , and S. Noguchi, 2013b: Lower-stratospheric radiative damping and polar-night jet oscillation events. J. Atmos. Sci., 70, 13911408, doi:10.1175/JAS-D-12-0193.1.

    • Search Google Scholar
    • Export Citation
  • Hu, J. G., , R. C. Ren, , Y. Y. Yu, , and H. M. Xu, 2014: The boreal spring stratospheric final warming and its interannual and interdecadal variability. Sci. China Earth Sci., 57, 710718, doi:10.1007/s11430-013-4699-x.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., , and A. J. Charlton-Perez, 2011: Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Climate Dyn., 37, 14431456, doi:10.1007/s00382-010-0919-7.

    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., , and K. Kodera, 2001: Variability of the polar night jet in the Northern and Southern Hemispheres. J. Geophys. Res., 106, 20 70320 713, doi:10.1029/2001JD900226.

    • Search Google Scholar
    • Export Citation
  • Kuttippurath, J., , and G. Nikulin, 2012: A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010. Atmos. Chem. Phys., 12, 81158129, doi:10.5194/acp-12-8115-2012.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1977: Interannual variability of the winter stratosphere in the Northern Hemisphere. Mon. Wea. Rev., 105, 762770, doi:10.1175/1520-0493(1977)105<0762:IVOTWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., , and B. Naujokat, 2000: The lower arctic stratosphere in winter since 1952. SPARC Newsletter, No. 15, World Climate Research Programme SPARC Office, Paris, France, 11–14.

  • Langematz, U., , and M. Kunze, 2006: An update on dynamical changes in the Arctic and Antarctic stratospheric polar vortices. Climate Dyn., 27, 647660, doi:10.1007/s00382-006-0156-2.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , D. W. J. Thompson, , and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., , K. Krüger, , J. L. Sabutis, , S. A. Sena, , and S. Pawson, 2005: The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367.

    • Search Google Scholar
    • Export Citation
  • Martius, O., , L. M. Polvani, , and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, doi:10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nash, E. R., , P. A. Newman, , J. E. Rosenfield, , and M. R. Schoeberl, 1996: An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res., 101, 94719478, doi:10.1029/96JD00066.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., , H. Nakamura, , and Y. J. Orsolini, 2011: Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J. Climate, 24, 64086423, doi:10.1175/JCLI-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., , and B. Naujokat, 1999: The cold winters of the middle 1990s in the northern lower stratosphere. J. Geophys. Res., 104, 14 20914 222, doi:10.1029/1999JD900211.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, doi:10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ren, R. C., , and M. Cai, 2006: Variability of polar vortex oscillation viewed in an isentropic potential vorticity coordinate. Adv. Atmos. Sci., 23, 884890, doi:10.1007/s00376-006-0884-6.

    • Search Google Scholar
    • Export Citation
  • Ren, R. C., , and M. Cai, 2008: Meridional and downward propagation of atmospheric circulation anomalies. Part II: Southern Hemisphere cold season variability. J. Atmos. Sci., 65, 23432359, doi:10.1175/2007JAS2594.1.

    • Search Google Scholar
    • Export Citation
  • Ren, R. C., , M. Cai, , C. Y. Xiang, , and G. X. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 13451358, doi:10.1007/s00382-011-1137-7.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., , C. G. Fletcher, , and P. J. Kushner, 2010: The role of linear interference in the annular mode response to extratropical surface forcing. J. Climate, 23, 60366050, doi:10.1175/2010JCLI3606.1.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., , and P. P. Rong, 2002: Interannual variability in the decay of lower stratospheric Arctic vortices. J. Meteor. Soc. Japan, 80, 9971012, doi:10.2151/jmsj.80.997.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., , W. J. Randel, , S. Pawson, , P. A. Newman, , and E. R. Nash, 1999: Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 104, 27 19127 201, doi:10.1029/1999JD900795.

    • Search Google Scholar
    • Export Citation
  • Wei, K., , W. Chen, , and R. H. Huang, 2007: Dynamical diagnosis of the breakup of the stratospheric polar vortex in the Northern Hemisphere. Sci. China,50D, 13691379, doi:10.1007/s11430-007-0100-2.

    • Search Google Scholar
    • Export Citation
  • Zhou, S. T., , M. E. Gelman, , A. J. Miller, , and J. P. McCormack, 2000: An inter-hemisphere comparison of the persistent stratospheric polar vortex. Geophys. Res. Lett., 27, 11231126, doi:10.1029/1999GL011018.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 130 130 11
PDF Downloads 110 110 11

Occurrence of Winter Stratospheric Sudden Warming Events and the Seasonal Timing of Spring Stratospheric Final Warming

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters and KLME, Nanjing University of Information Science and Technology, Nanjing, China
  • 2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters and KLME, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

Based on the NCEP–NCAR reanalysis dataset covering 1958–2012, this paper demonstrates a statistically significant relationship between the occurrence of major stratospheric sudden warming events (SSWs) in midwinter and the seasonal timing of stratospheric final warming events (SFWs) in spring. Specifically, early spring SFWs that on average occur in early March tend to be preceded by non-SSW winters, while late spring SFWs that on average take place up until early May are mostly preceded by SSW events in midwinter. Though the occurrence (absence) of SSW events in midwinter may not always be followed by late (early) SFWs in spring, there is a much higher (lower) probability of late SFWs than early SFWs in spring after SSW (non-SSW) winters, particularly when the winter SSWs occur no earlier than early January or in the period from late January to early February. Diagnosis shows that, corresponding to an SSW (non-SSW) winter and the following late (early)-SFW spring, intensity of planetary wave activity in the stratosphere tends to evolve out of phase from midwinter to the following spring, being anomalously stronger (weaker) in winter and anomalously weaker (stronger) in spring. Furthermore, the strengthening of the western Eurasian high, which appears during early to mid-January in late-SFW years but does not appear until late February to mid-March in early-SFW years, always precedes the strengthening of planetary wave activity in the stratosphere and thus acts as a tropospheric precursor to the seasonal timing of SFWs.

Corresponding author address: Dr. Rongcai Ren, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: rrc@lasg.iap.ac.cn

Abstract

Based on the NCEP–NCAR reanalysis dataset covering 1958–2012, this paper demonstrates a statistically significant relationship between the occurrence of major stratospheric sudden warming events (SSWs) in midwinter and the seasonal timing of stratospheric final warming events (SFWs) in spring. Specifically, early spring SFWs that on average occur in early March tend to be preceded by non-SSW winters, while late spring SFWs that on average take place up until early May are mostly preceded by SSW events in midwinter. Though the occurrence (absence) of SSW events in midwinter may not always be followed by late (early) SFWs in spring, there is a much higher (lower) probability of late SFWs than early SFWs in spring after SSW (non-SSW) winters, particularly when the winter SSWs occur no earlier than early January or in the period from late January to early February. Diagnosis shows that, corresponding to an SSW (non-SSW) winter and the following late (early)-SFW spring, intensity of planetary wave activity in the stratosphere tends to evolve out of phase from midwinter to the following spring, being anomalously stronger (weaker) in winter and anomalously weaker (stronger) in spring. Furthermore, the strengthening of the western Eurasian high, which appears during early to mid-January in late-SFW years but does not appear until late February to mid-March in early-SFW years, always precedes the strengthening of planetary wave activity in the stratosphere and thus acts as a tropospheric precursor to the seasonal timing of SFWs.

Corresponding author address: Dr. Rongcai Ren, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: rrc@lasg.iap.ac.cn
Save