• Barry, L., , G. C. Craig, , and J. Thuburn, 2002: Poleward heat transport by the atmospheric heat engine. Nature, 415, 774777, doi:10.1038/415774a.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., , and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164184, doi:10.1175/1520-0469(1983)040<0164:LSTDTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branscome, L. E., 1983: The Charney baroclinic stability problem: Approximate solutions and modal structures. J. Atmos. Sci., 40, 13931409, doi:10.1175/1520-0469(1983)040<1393:TCBSPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burger, A. P., 1962: On the non-existence of critical wavelengths in a continuous baroclinic stability problem. J. Atmos. Sci., 19, 3138, doi:10.1175/1520-0469(1962)019<0031:OTNEOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Choi, D. S., , and A. P. Showman, 2011: Power spectral analysis of Jupiter’s clouds and kinetic energy from Cassini. Icarus, 216, 597609, doi:10.1016/j.icarus.2011.10.001.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., , and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, doi:10.1175/JAS3695.1.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Farrell, B. F., , and P. J. Ioannou, 1994: A theory for the statistical equilibrium energy spectrum and heat flux produced by transient baroclinic waves. J. Atmos. Sci., 51, 26852698, doi:10.1175/1520-0469(1994)051<2685:ATFTSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1960: A problem in baroclinic stability. Quart. J. Roy. Meteor. Soc., 86, 237251, doi:10.1002/qj.49708636813.

  • Held, I. M., 1978: The vertical scale of an unstable baroclinic wave and its importance for eddy heat flux parameterizations. J. Atmos. Sci., 35, 572576, doi:10.1175/1520-0469(1978)035<0572:TVSOAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412417, doi:10.1175/1520-0469(1982)039<0412:OTHOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and E. O’Brien, 1992: Quasigeostrophic turbulence in a three-layer model: Effects of vertical structure in the mean shear. J. Atmos. Sci., 49, 18611870, doi:10.1175/1520-0469(1992)049<1861:QTIATL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946952, doi:10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., , and R. Ferrari, 2012: Macroturbulent equilibration in a thermally forced primitive equation system. J. Atmos. Sci., 69, 695713, doi:10.1175/JAS-D-11-041.1.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., , and R. Ferrari, 2013a: The vertical structure of the eddy diffusivity and the equilibration of the extratropical atmosphere. J. Atmos. Sci., 70, 14561469, doi:10.1175/JAS-D-12-086.1.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., , and R. Ferrari, 2013b: Equilibration of an atmosphere by adiabatic eddy fluxes. J. Atmos. Sci., 70, 29482962, doi:10.1175/JAS-D-13-013.1.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., , and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348, doi:10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., 1984: A global available potential energy-kinetic energy budget in terms of the two-dimensional wavenumber for the FGGE year. Atmos.–Ocean, 22, 265282, doi:10.1080/07055900.1984.9649199.

    • Search Google Scholar
    • Export Citation
  • Larichev, V. D., , and I. M. Held, 1995: Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr., 25, 22852297, doi:10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , and I. M. Held, 1991: Subcritical instability and hysteresis in a two-layer model. J. Atmos. Sci., 48, 10711077, doi:10.1175/1520-0469(1991)048<1071:SIAHIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and B. Farrell, 1980a: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, doi:10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and B. Farrell, 1980b: The role of polar regions in global climate, and a new parameterization of global heat transport. Mon. Wea. Rev., 108, 20642079, doi:10.1175/1520-0493(1980)108<2064:TROPRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., , and T. Schneider, 2009: Scales of linear baroclinic instability and macroturbulence in dry atmospheres. J. Atmos. Sci., 66, 18211833, doi:10.1175/2008JAS2884.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., , and T. Schneider, 2007: Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy-eddy interactions. Geophys. Res. Lett.,34, L22801, doi:10.1029/2007GL031779.

  • Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer-Verlag, 624 pp.

  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273286, doi:10.1111/j.2153-3490.1954.tb01123.x.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401441, doi:10.1146/annurev.fl.11.010179.002153.

  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, doi:10.1080/03091928008241178.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 13171340, doi:10.1175/1520-0469(2004)061<1317:TTATTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2007: The thermal stratification of the extratropical troposphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 47–77.

  • Schneider, T., , and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63, 15691586, doi:10.1175/JAS3699.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., , and C. C. Walker, 2008: Scaling laws and regime transitions of macroturbulence in dry atmospheres. J. Atmos. Sci., 65, 21532173, doi:10.1175/2007JAS2616.1.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., , and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, doi:10.1175/JPO2771.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 1987: A spectral view of nonlinear fluxes and stationary-transient interaction in the atmosphere. J. Atmos. Sci., 44, 11661179, doi:10.1175/1520-0469(1987)044<1166:ASVONF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1976: Baroclinic instability on the sphere: Normal modes of the primitive and quasi-geostrophic equations. J. Atmos. Sci., 33, 14541477, doi:10.1175/1520-0469(1976)033<1454:BIOTSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1977: Baroclinic instability on the sphere: Solutions with a more realistic tropopause. J. Atmos. Sci., 34, 581588, doi:10.1175/1520-0469(1977)034<0581:BIOTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561571, doi:10.1175/1520-0469(1978)035<0561:BA>2.0.CO;2.

  • Stone, P. H., , and M.-S. Yao, 1990: Development of a two-dimensional zonally averaged statistical-dynamical model. Part III: The parameterization of the eddy fluxes of heat and moisture. J. Climate, 3, 726740, doi:10.1175/1520-0442(1990)003<0726:DOATDZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., , and P. Ditlevsen, 1999: Two-dimensional turbulence properties of the ECMWF reanalyses. Tellus, 51A, 749772, doi:10.1034/j.1600-0870.1996.00015.x.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., , N. Dikovskaya, , and B. Galperin, 2007: On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci., 64, 33123327, doi:10.1175/JAS4013.1.

    • Search Google Scholar
    • Export Citation
  • Tobias, S. M., , and J. B. Marston, 2013: Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett.,110, 104502, doi:10.1103/PhysRevLett.110.104502.

  • Valdes, P. J., , and B. J. Hoskins, 1988: Baroclinic instability of the zonally averaged flow with boundary layer damping. J. Atmos. Sci., 45, 15841593, doi:10.1175/1520-0469(1988)045<1584:BIOTZA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Vallis, G. K., , and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, doi:10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , A. Barcilon, , and L. N. Howard, 1985: Linear dynamics of transient planetary waves in the presence of damping. J. Atmos. Sci., 42, 18931910, doi:10.1175/1520-0469(1985)042<1893:LDOTPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , and A. Barcilon, 1995: Low-frequency variability and wavenumber selection in models with zonally symmetric forcing. J. Atmos. Sci., 52, 491503, doi:10.1175/1520-0469(1995)052<0491:LFVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., 2007: The relation between baroclinic adjustment and turbulent diffusion in the two-layer model. J. Atmos. Sci., 64, 12841300, doi:10.1175/JAS3886.1.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., 2008: The sensitivity of the isentropic slope in a primitive equation dry model. J. Atmos. Sci., 65, 4365, doi:10.1175/2007JAS2284.1.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., , and G. K. Vallis, 2009: Equilibration of baroclinic turbulence in primitive equations and quasigeostrophic models. J. Atmos. Sci., 66, 837863, doi:10.1175/2008JAS2848.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 9
PDF Downloads 33 33 10

The Role of Criticality on the Horizontal and Vertical Scales of Extratropical Eddies in a Dry GCM

View More View Less
  • 1 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
  • 2 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

This paper discusses the sensitivity of the horizontal and vertical scales of extratropical eddies when criticality is varied in a dry, primitive-equation, general circulation model. Criticality is a measure of extratropical isentropic slope and when defined appropriately its value is often close to 1 for Earth’s climate. The model is forced by a Newtonian relaxation of temperature to a prescribed temperature profile, and criticality is increased by increasing the thermal relaxation rate on the mean flow. When criticality varies near 1, it is shown that there exists a weakly nonlinear regime in which the eddy scale increases with criticality without involving an inverse cascade, while at the same time the Rossby radius may in fact decrease. The quasigeostrophic instability of the Charney problem is revisited. It is demonstrated that both the horizontal and vertical scales of the most unstable wave depend on criticality, and simple estimates for the two scales are obtained. The authors reconcile the opposite trends of the eddy scale and Rossby radius and obtain an estimate for the eddy scale in terms of the Rossby radius and criticality that is broadly consistent with simulations.

Corresponding author address: Junyi Chai, Atmospheric and Oceanic Sciences Program, 300 Forrestal Road, Sayre Hall, Princeton, NJ 08544. E-mail: junyic@princeton.edu

Abstract

This paper discusses the sensitivity of the horizontal and vertical scales of extratropical eddies when criticality is varied in a dry, primitive-equation, general circulation model. Criticality is a measure of extratropical isentropic slope and when defined appropriately its value is often close to 1 for Earth’s climate. The model is forced by a Newtonian relaxation of temperature to a prescribed temperature profile, and criticality is increased by increasing the thermal relaxation rate on the mean flow. When criticality varies near 1, it is shown that there exists a weakly nonlinear regime in which the eddy scale increases with criticality without involving an inverse cascade, while at the same time the Rossby radius may in fact decrease. The quasigeostrophic instability of the Charney problem is revisited. It is demonstrated that both the horizontal and vertical scales of the most unstable wave depend on criticality, and simple estimates for the two scales are obtained. The authors reconcile the opposite trends of the eddy scale and Rossby radius and obtain an estimate for the eddy scale in terms of the Rossby radius and criticality that is broadly consistent with simulations.

Corresponding author address: Junyi Chai, Atmospheric and Oceanic Sciences Program, 300 Forrestal Road, Sayre Hall, Princeton, NJ 08544. E-mail: junyic@princeton.edu
Save