• Arakawa, A., , J. H. Jung, , and C. M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, doi:10.5194/acp-11-3731-2011.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., , A. J. Dyer, , R. R. Brook, , D. G. Reid, , and A. J. Troup, 1971: The Wangara Experiment: Boundary layer data. CSIRO Division of Meteorological Physics Tech. Paper 19, 340 pp.

  • Deardorff, J., 1974: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7, 199226, doi:10.1007/BF00227913.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., , P. G. Duynkerke, , and H. J. J. Jonker, 2004: Large-eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421, doi:10.1175/1520-0469(2004)061<0403:LSHLIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., , and W. H. Reid, 2004: Hydrodynamic Stability. Cambridge University Press, 605 pp.

  • Hong, S.-Y., , and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , and Y. Noh, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Honnert, R., , V. Masson, , and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, doi:10.1175/JAS-D-11-061.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, J., , J. Kaimal, , and J. Gaynor, 1988: Eddy structure in the convective boundary layer—New measurements and new concepts. Quart. J. Roy. Meteor. Soc., 114, 827858, doi:10.1002/qj.49711448202.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., , and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

  • Kelly, R. E., 1994: The onset and development of thermal convection in fully developed shear flows. Adv. Appl. Mech., 31, 35112, doi:10.1016/S0065-2156(08)70255-2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kondo, H., , R. Kimura, , and S. Nishimoto, 1972: Effects of curved temperature profiles on the Benard-Rayleigh convective instability. J. Meteor. Soc. Japan, 50, 6569.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., , and P. L. Stephens, 1980: The role of thermals in the convective boundary layer. Bound.-Layer Meteor., 19, 509532, doi:10.1007/BF00122351.

    • Search Google Scholar
    • Export Citation
  • Michalke, A., 1964: On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid Mech., 19, 543556, doi:10.1017/S0022112064000908.

    • Search Google Scholar
    • Export Citation
  • Michioka, T., , and F. K. Chow, 2008: High-resolution large-eddy simulations of scalar transport in atmospheric boundary layer flow over complex terrain. J. Appl. Meteor. Climatol., 47, 31503169, doi:10.1175/2008JAMC1941.1.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., , and R. Rotunno, 1990: Vertical-velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci., 47, 11491162, doi:10.1175/1520-0469(1990)047<1149:VVSITB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, D., , and P. Saffman, 1975: Instability of a straight vortex filament in a strain field. Proc. Roy. Soc. London, A346, 413425.

  • Newsom, R. K., , and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60, 1633, doi:10.1175/1520-0469(2003)060<0016:SFIITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Piotrowski, Z. P., , P. K. Smolarkiewicz, , S. P. Malinowski, , and A. A. Wyszogrodzki, 2009: On numerical realizability of thermal convection. J. Comput. Phys., 228, 62686290, doi:10.1016/j.jcp.2009.05.023.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., , and A. Xiu, 1995: Development and testing of a surface flux and planetary boundary-layer model for application in mesoscale models. J. Appl. Meteor., 34, 1632, doi:10.1175/1520-0450-34.1.16.

    • Search Google Scholar
    • Export Citation
  • Ray, D., 1965: Cellular convection with nonisotropic eddys. Tellus, 17, 434439, doi:10.1111/j.2153-3490.1965.tb00205.x.

  • Ray, D., 1986: Variable eddy diffusivities and atmospheric cellular convection. Bound.-Layer Meteor., 36, 117131, doi:10.1007/BF00117463.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y., 1970: Influences of thermal boundary layer on atmospheric cellular convection. J. Meteor. Soc. Japan, 48, 492501.

  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Sullivan, P. P., , and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, doi:10.1175/JAS-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Sun, W. Y., , and C. Z. Chang, 1986: Diffusion model for a convective layer. Part I: Numerical simulation of convective boundary layer. J. Climate Appl. Meteor., 25, 14451453, doi:10.1175/1520-0450(1986)025<1445:DMFACL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Talbot, C., , E. Bou-Zeid, , and J. Smith, 2012: Nested mesoscale large-eddy simulations with WRF: Performance in real test cases. J. Hydrometeor., 13, 14211441, doi:10.1175/JHM-D-11-048.1.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., , and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Tong, C., , J. C. Wyngaard, , S. Khanna, , and J. G. Brasseur, 1998: Resolvable- and subgrid-scale measurement in the atmospheric surface layer: Technique and issues. J. Atmos. Sci., 55, 31143126, doi:10.1175/1520-0469(1998)055<3114:RASSMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, M., , J. Zong, , and K. K. Droegemeier, 1996: Parameterization of PBL turbulence in a multi-scale nonhydrostatic model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 363–365.

  • Xue, M., , K. K. Droegemeier, , and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, doi:10.1007/s007030070003.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, doi:10.1007/s007030170027.

    • Search Google Scholar
    • Export Citation
  • Yamada, T., , and G. Mellor, 1975: Simulation of Wangara atmospheric boundary layer data. J. Atmos. Sci., 32, 23092329, doi:10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zappa, M., and Coauthors, 2008: Map D-PHASE: Real-time demonstration of hydrological ensemble prediction systems. Atmos. Sci. Lett., 9, 8087, doi:10.1002/asl.183.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., , and F. K. Chow, 2013: Meso- and fine-scale modeling over complex terrain: Parameterizations and applications. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. De Wekker, and B. Snyder, Eds., Springer, 591–653.

  • Zhou, B., , and F. Chow, 2013: Nighttime turbulent events in a steep valley: A nested large-eddy simulation study. J. Atmos. Sci., 70, 3262–3276, doi:10.1175/JAS-D-13-02.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 125 10
PDF Downloads 113 113 13

The Convective Boundary Layer in the Terra Incognita

View More View Less
  • 1 Key Laboratory for Mesoscale Severe Weather/MOE, and School of Atmospheric Science, Nanjing University, Nanjing, China, and Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California
  • 2 Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California
© Get Permissions
Restricted access

Abstract

Numerical simulations of a convective boundary layer (CBL) are performed to investigate model behavior in the terra incognita, also known as the gray zone. The terra incognita of the CBL refers to a range of model grid spacing that is comparable to the size of the most energetic convective eddies, which are on the order of the boundary layer depth. Using the Rayleigh–Bénard thermal instability as reference, a set of idealized simulations is used to show that gray zone modeling is not only a numerical challenge, but also poses dynamical difficulties. When the grid spacing falls within the CBL gray zone, grid-dependent convection can occur. The size of the initial instability structures is set by the grid spacing rather than the natural state of the flow. This changes higher-order flow statistics and poses fundamental difficulties for gray zone modeling applications.

Corresponding author address: Tina Chow, Department of Civil and Environmental Engineering, 621 Davis Hall, University of California, Berkeley, Berkeley, CA 94720-1710. E-mail: tinakc@berkeley.edu

Abstract

Numerical simulations of a convective boundary layer (CBL) are performed to investigate model behavior in the terra incognita, also known as the gray zone. The terra incognita of the CBL refers to a range of model grid spacing that is comparable to the size of the most energetic convective eddies, which are on the order of the boundary layer depth. Using the Rayleigh–Bénard thermal instability as reference, a set of idealized simulations is used to show that gray zone modeling is not only a numerical challenge, but also poses dynamical difficulties. When the grid spacing falls within the CBL gray zone, grid-dependent convection can occur. The size of the initial instability structures is set by the grid spacing rather than the natural state of the flow. This changes higher-order flow statistics and poses fundamental difficulties for gray zone modeling applications.

Corresponding author address: Tina Chow, Department of Civil and Environmental Engineering, 621 Davis Hall, University of California, Berkeley, Berkeley, CA 94720-1710. E-mail: tinakc@berkeley.edu
Save