• Back, L. E., , and C. S. Bretherton, 2005: The relationship between wind speed and precipitation in the Pacific ITCZ. J. Climate, 18, 43174328, doi:10.1175/JCLI3519.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., , and C. L. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463476, doi:10.1175/1520-0493(1987)115<0463:TGZITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barcilon, A., , J. C. Jusem, , and P. G. Drazin, 1979: On the two-dimensional hydrostatic flow of a stream of moist air over a mountain ridge. Geophys. Astrophys. Fluid Dyn., 13, 125140, doi:10.1080/03091927908243765.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., , and A. J. Nash, 1994: Diurnal variation of surface airflow and rainfall frequencies on the island of Hawaii. Mon. Wea. Rev., 122, 3456, doi:10.1175/1520-0493(1994)122<0034:DVOSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., , and J. Feng, 1995: The influences of inversion height on precipitation and airflow over the island of Hawaii. Mon. Wea. Rev., 123, 16601676, doi:10.1175/1520-0493(1995)123<1660:TIOIHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and Coauthors, 2008: The cumulus, photogrammetric, in situ, and Doppler observations experiment of 2006. Bull. Amer. Meteor. Soc., 89, 5773, doi:10.1175/BAMS-89-1-57.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Durran, D., , and J. Klemp, 1982b: On the effects of moisture on the Brunt-Väisälä frequency. J. Atmos. Sci., 39, 21522158, doi:10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Esteban, M. A., , and Y.-L. Chen, 2008: The impact of trade wind strength on precipitation over the windward side of the island of Hawaii. Mon. Wea. Rev., 136, 913928, doi:10.1175/2007MWR2059.1.

    • Search Google Scholar
    • Export Citation
  • Fuhrer, O., , and C. Schär, 2005: Embedded cellular convection in moist flow past topography. J. Atmos. Sci., 62, 28102828, doi:10.1175/JAS3512.1.

    • Search Google Scholar
    • Export Citation
  • Gaberšek, S., , and D. R. Durran, 2004: Gap flows through idealized topography. Part I: Forcing by large-scale winds in the nonrotating limit. J. Atmos. Sci., 61, 28462862, doi:10.1175/JAS-3340.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Janjic, Z. I., 1996: The surface layer in the NCEP Eta model. Proc. 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

  • Jensen, J., , and B. S. Lee, 2008: Giant sea-salt aerosols and warm rain formation in marine stratocumulus. J. Atmos. Sci., 65, 36783694, doi:10.1175/2008JAS2617.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , G. Feingold, , and A. Sorooshian, 2010: Effect of aerosol on the susceptibility and efficiency of precipitation in warm trade cumulus clouds. J. Atmos. Sci., 67, 35253540, doi:10.1175/2010JAS3484.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55, 301316, doi:10.1034/j.1600-0870.2003.00025.x.

  • Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361378, doi:10.1175/2010JAS3642.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., , and D. R. Durran, 2005: Observations and modeling of banded orographic convection. J. Atmos. Sci., 62, 14631479, doi:10.1175/JAS3417.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., , and R. B. Smith, 2009: Orographic precipitation in the tropics: Large-eddy simulations and theory. J. Atmos. Sci., 66, 25592578, doi:10.1175/2009JAS2990.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., , and C.-C. Wang, 2014: Boundary-layer updrafts driven by airflow over heated terrain. J. Atmos. Sci., 71, 14251442, doi:10.1175/JAS-D-13-0287.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , J. Dudhia, , and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, doi:10.1175/2008MWR2596.1.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., , G. H. Bryan, , and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF model. Mon. Wea. Rev., 135, 38083824, doi:10.1175/2007MWR2100.1.

    • Search Google Scholar
    • Export Citation
  • Mårtensson, E. M., , E. D. Nilsson, , G. de Leeuw, , L. H. Cohen, , and H.-C. Hansson, 2003: Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res., 108, 4297, doi:10.1029/2002JD002263.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., , and R. Rotunno, 2009: Numerical simulations of conditionally unstable flows over a mountain ridge. J. Atmos. Sci., 66, 18651885, doi:10.1175/2009JAS2902.1.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., , R. B. Smith, , and A. D. Nugent, 2013: The dynamics of ascent-forced orographic convection in the tropics: Results from Dominica. J. Atmos. Sci., 70, 40674088, doi:10.1175/JAS-D-13-016.1.

    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., , and I. O’Muircheartaigh, 1980: Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10, 20942099, doi:10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., , B. Stevens, , and A. P. Siebesma, 2009: The environment of precipitating shallow cumulus convection. J. Atmos. Sci., 66, 19621979, doi:10.1175/2008JAS2841.1.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., , and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003, doi:10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., , P. Smolarkiewicz, , and J. Warner, 1989: On the dynamics of Hawaiian cloud bands: Comparison of model results with observations and island climatology. J. Atmos. Sci., 46, 15891608, doi:10.1175/1520-0469(1989)046<1589:OTDOHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO Campaign. Bull. Amer. Meteor. Soc., 88, 19121928, doi:10.1175/BAMS-88-12-1912.

    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., , and P. K. Smolarkiewicz, 1994: Thermally forced low Froude number flow past three-dimensional obstacles. J. Atmos. Sci., 51, 117133, doi:10.1175/1520-0469(1994)051<0117:TFLFNF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., , S. C. Sherwood, , D. Gerstle, , C. Liu, , and D. J. Kirshbaum, 2011: Exploring the land–ocean contrast in convective vigor using islands. J. Atmos. Sci., 68, 602618, doi:10.1175/2010JAS3558.1.

    • Search Google Scholar
    • Export Citation
  • Russotto, R. D., , T. Storelvmo, , and R. B. Smith, 2013: Modeling aerosol activation in a tropical, orographic, island setting: Sensitivity tests and comparison with observations. Atmos. Res., 134, 1223, doi:10.1016/j.atmosres.2013.07.017.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494, doi:10.1175/2008MWR2583.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Smith, R. B., 1989: Mountain-induced stagnation points in hydrostatic flow. Tellus,41A, 270–274, doi:10.1111/j.1600-0870.1989.tb00381.x.

  • Smith, R. B., 2011: Regime diagrams for K-theory dispersion. Bound.-Layer Meteor., 139, 501519, doi:10.1007/s10546-011-9594-4.

  • Smith, R. B., , and Y.-L. Lin, 1982: The addition of heat to a stratified airstream with application to the dynamics of orographic rain. Quart. J. Roy. Meteor. Soc., 108, 353378, doi:10.1002/qj.49710845605.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , and V. Grubišić, 1993: Aerial observations of Hawaii wake. J. Atmos. Sci., 50, 37283750, doi:10.1175/1520-0469(1993)050<3728:AOOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , P. Schafer, , and D. J. Kirshbaum, 2009a: Orographic precipitation in the tropics: Experiments in Dominica. J. Atmos. Sci., 66, 16981716, doi:10.1175/2008JAS2920.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , P. Schafer, , D. J. Kirshbaum, , and E. Regina, 2009b: Orographic enhancement of precipitation inside Hurricane Dean. J. Hydrometeor., 10, 820831, doi:10.1175/2008JHM1057.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 2012: Orographic precipitation in the tropics: The Dominica experiment. Bull. Amer. Meteor. Soc., 93, 15671579, doi:10.1175/BAMS-D-11-00194.1.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , R. M. Rasmussen, , and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 18721905, doi:10.1175/1520-0469(1988)045<1872:OTDOHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , C. D. Burleyson, , and S. E. Yuter, 2011: Rain on small tropical islands. J. Geophys. Res.,116, D08102, doi:10.1029/2010JD014695.

  • Tabary, P., 2007: The new French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, 22, 393408, doi:10.1175/WAF1004.1.

    • Search Google Scholar
    • Export Citation
  • Tian, W.-S., , and D. J. Parker, 2002: Two-dimensional simulation of orographic effects on mesoscale boundary-layer convection. Quart. J. Roy. Meteor. Soc., 128, 19291952, doi:10.1256/003590002320603476.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1968: A reduction in rainfall associated with smoke from sugar-cane fires—An inadvertent weather modification? J. Appl. Meteor., 7, 247251, doi:10.1175/1520-0450(1968)007<0247:ARIRAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodcock, A. H., 1960: The origin of trade-wind orographic shower rains. Tellus, 12, 315326, doi:10.1111/j.2153-3490.1960.tb01316.x.

  • Wulfmeyer, V., and Coauthors, 2008: The convective and orographically induced precipitation study. Bull. Amer. Meteor. Soc., 89, 14771486, doi:10.1175/2008BAMS2367.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 25
PDF Downloads 46 46 13

Wind Speed Control of Tropical Orographic Convection

View More View Less
  • 1 Yale University, New Haven, Connecticut
  • 2 University at Albany, State University of New York, Albany, New York
© Get Permissions
Restricted access

Abstract

This study compares observations from the Dominica Experiment (DOMEX) field campaign with 3D and 2D Weather Research and Forecasting Model (WRF) simulations to understand how ambient upstream wind speed controls the transition from thermally to mechanically forced moist orographic convection. The environment is a conditionally unstable, tropical atmosphere with shallow trade wind cumulus clouds. Three flow indices are defined to quantify the convective transition: horizontal divergence aloft, cloud location, and island surface temperature. As wind speed increases, horizontal airflow divergence from plume detrainment above the mountain changes to convergence associated with plunging flow, convective clouds relocate from the leeward to the windward side of the mountain as mechanically triggered convection takes over, and the daytime mountaintop temperature decreases because of increased ventilation and cloud shading. Possible mechanisms by which wind speed controls island precipitation are also discussed. The result is a clearer understanding of orographic convection in the tropics.

Corresponding author address: Alison D. Nugent, Yale University, Department of Geology and Geophysics, 210 Whitney Ave., New Haven, CT 06511. E-mail: alison.nugent@yale.edu

Abstract

This study compares observations from the Dominica Experiment (DOMEX) field campaign with 3D and 2D Weather Research and Forecasting Model (WRF) simulations to understand how ambient upstream wind speed controls the transition from thermally to mechanically forced moist orographic convection. The environment is a conditionally unstable, tropical atmosphere with shallow trade wind cumulus clouds. Three flow indices are defined to quantify the convective transition: horizontal divergence aloft, cloud location, and island surface temperature. As wind speed increases, horizontal airflow divergence from plume detrainment above the mountain changes to convergence associated with plunging flow, convective clouds relocate from the leeward to the windward side of the mountain as mechanically triggered convection takes over, and the daytime mountaintop temperature decreases because of increased ventilation and cloud shading. Possible mechanisms by which wind speed controls island precipitation are also discussed. The result is a clearer understanding of orographic convection in the tropics.

Corresponding author address: Alison D. Nugent, Yale University, Department of Geology and Geophysics, 210 Whitney Ave., New Haven, CT 06511. E-mail: alison.nugent@yale.edu
Save