• Alexander, M. J., , P. T. May, , and J. H. Beres, 2004: Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. J. Geophys. Res.,109, D20S04, doi:10.1029/2004JD004729.

  • Alexander, M. J., , J. H. Richter, , and B. R. Sutherland, 2006: Generation and trapping of gravity waves from convection with comparison to parameterization. J. Atmos. Sci., 63, 29632977, doi:10.1175/JAS3792.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Balasubramanian, G., , and M. Yau, 1996: The life cycle of a simulated marine cyclone: Energetics and PV diagnostics. J. Atmos. Sci., 53, 639653, doi:10.1175/1520-0469(1996)053<0639:TLCOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., , M. J. Alexander, , and J. R. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61, 324337, doi:10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., , S. Wang, , and L. M. Polvani, 2012: Midlatitude storms in a moister world: Lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41, 787–802, doi:10.1007/s00382-012-1472-3.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., , S. E. Belcher, , and R. S. Plant, 2011: Moisture transport in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 360373, doi:10.1002/qj.783.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, doi:10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: The propagation of groups of internal waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92, 466480, doi:10.1002/qj.49709239403.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charron, M., , and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59, 923941, doi:10.1175/1520-0469(2002)059<0923:GWFFPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., , and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310, doi:10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., , and R. A. Vincent, 1993: VHF radar observations of gravity-wave production by cold fronts over southern Australia. J. Atmos. Sci., 50, 785806, doi:10.1175/1520-0469(1993)050<0785:VROOGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1962: On the vertical circulation in frontal zones. Geophys. Publ., 24, 147160.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 107 pp.

  • Emanuel, K. A., , A. M. Fantini, , and A. J. Thorpe, 1987: Baroclinic instability in an enviroment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, doi:10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fantini, M., 2004: Baroclinic instability of a zero-PVE jet: Enhanced effects of moisture on the life cycle of midlatitude cyclones. J. Atmos. Sci., 61, 12961307, doi:10.1175/1520-0469(2004)061<1296:BIOAZJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ford, R., , M. E. McIntyre, , and W. A. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 12361254, doi:10.1175/1520-0469(2000)057<1236:BATSQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 10031063, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Griffiths, M., , and M. J. Reeder, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. I: Model solutions. Quart. J. Roy. Meteor. Soc., 122, 11531174, doi:10.1002/qj.49712253307.

    • Search Google Scholar
    • Export Citation
  • Guest, F. M., , M. J. Reeder, , C. J. Marks, , and D. J. Karoly, 2000: Inertia–gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci., 57, 737752, doi:10.1175/1520-0469(2000)057<0737:IGWOIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., , and D. Keyser, 2001: Canonical frontal circulation patterns in terms of Green’s functions for the Sawyer-Eliassen equation. Quart. J. Roy. Meteor. Soc., 127, 17951814, doi:10.1002/qj.49712757517.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frotogenesis. Annu. Rev. Fluid Mech., 14, 131151, doi:10.1146/annurev.fl.14.010182.001023.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , J. Dudhia, , and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, doi:10.1175/2008MWR2596.1.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., , G. H. Bryan, , and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF model. Mon. Wea. Rev., 135, 38083824, doi:10.1175/2007MWR2100.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., , and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116, 25702592, doi:10.1175/1520-0493(1988)116<2570:AMGWEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., , and R. M. Yablonsky, 2004: The importance of the precipitation mass sink in tropical cyclones and other heavily precipitating systems. J. Atmos. Sci., 61, 16741692, doi:10.1175/1520-0469(2004)061<1674:TIOTPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lambaerts, J., , G. Lapeyre, , and V. Zeitlin, 2012: Moist vs dry baroclinic instability in a simplified two-layer atmospheric model with condensation and latent heat release. J. Atmos. Sci., 69, 14051426, doi:10.1175/JAS-D-11-0205.1.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and J. C. Knievel, 2005: Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection. J. Atmos. Sci., 62, 34083418, doi:10.1175/JAS3513.1.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , M. J. Reeder, , and T. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58, 12491274, doi:10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 2009: Spontaneous imbalance and hybrid vortex–gravity structures. J. Atmos. Sci., 66, 13151326, doi:10.1175/2008JAS2538.1.

    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169171, doi:10.1175/1520-0469(1948)005<0169:OTCOF>2.0.CO;2.

  • Mohebalhojeh, A. R., , and D. G. Dritschel, 2000: On the representation of gravity waves in numerical models of the shallow water equations. Quart. J. Roy. Meteor. Soc., 126, 669688, doi:10.1002/qj.49712656314.

    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., , and D. G. Dritschel, 2001: Hierarchies of balance conditions for the f-plane shallow-water equations. J. Atmos. Sci., 58, 24112426, doi:10.1175/1520-0469(2001)058<2411:HOBCFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., , and M. E. McIntyre, 2007: Local mass conservation and velocity splitting in PV-based balanced models. Part I: The hyperbalance equations. J. Atmos. Sci., 64, 17821793, doi:10.1175/JAS3933.1.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., , and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, doi:10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Plougonven, R., , and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett.,32, L18802, doi:10.1029/2005GL023730.

  • Plougonven, R., , and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , H. Teitelbaum, , and V. Zeitlin, 2003: Inertia gravity wave generation by the tropospheric midlatitude jet as given by the Fronts and Atlantic Strom-Track Experiment radio soundings. J. Geophys. Res., 108, 4686, doi:10.1029/2003JD003535.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , A. Hertzog, , and L. Guez, 2013: Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc., 139, 101118, doi:10.1002/qj.1965.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., , F. Sassi, , and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Rind, D. H., , R. Suozzo, , N. K. Balachandran, , A. A. Lacis, , and G. L. Russell, 1988: The GISS climate-middle atmosphere model. Part I: Model structure and climatology. J. Atmos. Sci., 45, 329370, doi:10.1175/1520-0469(1988)045<0329:TGGCMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , W. C. Skamarock, , and C. Snyder, 1994: An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci., 51, 33733398, doi:10.1175/1520-0469(1994)051<3373:AAOFIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., , and M. T. Montgomery, 2006: Conditions that inhibit the spontaneous radiation of spiral inertia–gravity waves from an intense mesoscale cyclone. J. Atmos. Sci., 63, 435456, doi:10.1175/JAS3641.1.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2002: The effect of back-reflection in the parameterization of non-orographic gravity-wave drag. J. Meteor. Soc. Japan, 80, 939962, doi:10.2151/jmsj.80.939.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., , and D. Keyser, 1990: Fronts, jet streams and the tropopause. Extratropical Cyclones: The Erik Palmén Meomorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , W. Wang, , and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf.]

  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Snyder, C., , W. C. Skamarock, , and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943211, doi:10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., , D. J. Muraki, , R. Plougonven, , and F. Zhang, 2007: Inertia–gravity waves generated within a dipole vortex. J. Atmos. Sci., 64, 44174431, doi:10.1175/2007JAS2351.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., , R. Plougonven, , and D. J. Muraki, 2009: Mechanisms for spontaneous gravity wave generation within a dipole vortex. J. Atmos. Sci., 66, 34643478, doi:10.1175/2009JAS3147.1.

    • Search Google Scholar
    • Export Citation
  • Tan, Z.-M., , F. Zhang, , R. Rotunno, , and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 17941804, doi:10.1175/1520-0469(2004)061<1794:MPOMBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., , B. J. Hoskins, , and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., , and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115, 721729, doi:10.1175/1520-0493(1987)115<0721:TSSAPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viúdez, A., 2007: The origin of the stationary frontal wave packet spontaneously generated in rotating stratified vortex dipoles. J. Fluid Mech., 593, 359383, doi:10.1017/S0022112007008816.

    • Search Google Scholar
    • Export Citation
  • Viúdez, A., , and D. G. Dritschel, 2006: Spontaneous generation of inertia–gravity wave packets by balanced geophysical flows. J. Fluid Mech., 553, 107117, doi:10.1017/S0022112005008311.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., , and K. H. Cook, 2009: Tropical storm development from African easterly waves in the eastern Atlantic: A comparison of two successive waves using a regional model as part of NASA AMMA 2006. J. Atmos. Sci., 66, 33133334, doi:10.1175/2009JAS3064.1.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., , and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, doi:10.1175/JAS-D-11-0347.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , and F. Zhang, 2010: Source of gravity waves within a vortex-dipole jet revealed by a linear model. J. Atmos. Sci., 67, 14381455, doi:10.1175/2010JAS3327.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , and C. A. Davis, 1994: Cyclogenesis in a saturated environment. J. Atmos. Sci., 51, 889907, doi:10.1175/1520-0469(1994)051<0889:CIASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci., 61, 440457, doi:10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , S. E. Koch, , C. A. Davis, , and M. L. Kaplan, 2000: A survey of unbalanced flow diagnostics and their application. Adv. Atmos. Sci., 17, 165183, doi:10.1007/s00376-000-0001-1.

    • Search Google Scholar
    • Export Citation
  • Zülicke, C., , and D. H. W. Peters, 2006: Simulation of inertia–gravity waves in a poleward breaking Rossby wave. J. Atmos. Sci., 63, 32533276, doi:10.1175/JAS3805.1.

    • Search Google Scholar
    • Export Citation
  • Zülicke, C., , and D. H. W. Peters, 2007: Impact of upper-level jet-generated inertia–gravity waves on surface wind and precipitation. Atmos. Chem. Phys. Discuss., 7, 15 87315 909, doi:10.5194/acpd-7-15873-2007.

    • Search Google Scholar
    • Export Citation
  • Zülicke, C., , and D. H. W. Peters, 2008: Parameterization of strong stratospheric inertia–gravity waves forced by poleward breaking Rossby waves. Mon. Wea. Rev., 136, 98119, doi:10.1175/2007MWR2060.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 16
PDF Downloads 29 29 9

Structure, Energy, and Parameterization of Inertia–Gravity Waves in Dry and Moist Simulations of a Baroclinic Wave Life Cycle

View More View Less
  • 1 Institute of Geophysics, University of Tehran, Tehran, Iran, and Leibniz Institute of Atmospheric Physics, University of Rostock, Kühlungsborn, Germany
  • 2 Leibniz Institute of Atmospheric Physics, University of Rostock, Kühlungsborn, Germany
  • 3 Institute of Geophysics, University of Tehran, Tehran, Iran
  • 4 Laboratoire de Météorologie Dynamique, IPSL, Ecole Polytechnique, Palaiseau, France
© Get Permissions
Restricted access

Abstract

The impact of moisture on inertia–gravity wave generation is assessed for an idealized unstable baroclinic wave using the Weather Research and Forecasting Model (WRF) in a channel on the f plane. The evolution of these waves in a moist simulation is compared with a dry simulation. The centers of action for inertia–gravity wave activity are identified as the equatorward-moving upper-level front and the poleward-progressing upper-level jet–surface front system. Four stratospheric wave packets are found, which are significantly more intense in the moist simulation and have slightly higher frequency. They are characterized by their structure and position during the baroclinic wave life cycle and are related to forcing terms in jet, front, and convection systems.

By exploring the time series of mass and energy, it is shown that the release of latent heat leads to a change in enthalpy, an increase in the eddy kinetic energy, and an intensification of the inertia–gravity wave energy. The ratio of the inertia–gravity wave energy to the eddy kinetic energy is estimated to be about 1/200 for the moist simulation, which is 3 times larger than that for the dry simulation. An empirical parameterization scheme for the inertia–gravity wave energy is proposed, based on the fast large-scale ageostrophic flow associated with the jet, front, and convection. The diagnosed stratospheric inertia–gravity wave energy is well captured by this parameterization in six WRF simulations with different moisture and resolutions. The approach used to construct the parameterization may serve as a starting point for state-dependent nonorographic gravity wave drag schemes in general circulation models.

Corresponding author address: Christoph Zülicke, Leibniz Institute of Atmospheric Physics, University of Rostock, Schlossstraße 6, 18225 Kühlungsborn, Germany. E-mail: zuelicke@iap-kborn.de

Abstract

The impact of moisture on inertia–gravity wave generation is assessed for an idealized unstable baroclinic wave using the Weather Research and Forecasting Model (WRF) in a channel on the f plane. The evolution of these waves in a moist simulation is compared with a dry simulation. The centers of action for inertia–gravity wave activity are identified as the equatorward-moving upper-level front and the poleward-progressing upper-level jet–surface front system. Four stratospheric wave packets are found, which are significantly more intense in the moist simulation and have slightly higher frequency. They are characterized by their structure and position during the baroclinic wave life cycle and are related to forcing terms in jet, front, and convection systems.

By exploring the time series of mass and energy, it is shown that the release of latent heat leads to a change in enthalpy, an increase in the eddy kinetic energy, and an intensification of the inertia–gravity wave energy. The ratio of the inertia–gravity wave energy to the eddy kinetic energy is estimated to be about 1/200 for the moist simulation, which is 3 times larger than that for the dry simulation. An empirical parameterization scheme for the inertia–gravity wave energy is proposed, based on the fast large-scale ageostrophic flow associated with the jet, front, and convection. The diagnosed stratospheric inertia–gravity wave energy is well captured by this parameterization in six WRF simulations with different moisture and resolutions. The approach used to construct the parameterization may serve as a starting point for state-dependent nonorographic gravity wave drag schemes in general circulation models.

Corresponding author address: Christoph Zülicke, Leibniz Institute of Atmospheric Physics, University of Rostock, Schlossstraße 6, 18225 Kühlungsborn, Germany. E-mail: zuelicke@iap-kborn.de
Save