• Addis, R. P., M. Garstang, and G. D. Emmitt, 1984: Downdrafts from tropical oceanic cumuli. Bound.-Layer Meteor., 28, 2349, doi:10.1007/BF00119455.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and M. Garstang, 1982: Subcloud layer energetics of precipitating convection. Mon. Wea. Rev., 110, 102117, doi:10.1175/1520-0493(1982)110<0102:SLEOPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, doi:10.1175/JAS-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107, 8045, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, doi:10.1175/JAS-D-11-0317.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and K. A. Emanuel, 2005: On the role of moist processes in tropical intraseasonal variability: Cloud–radiation and moisture–convection feedbacks. J. Atmos. Sci., 62, 27702789, doi:10.1175/JAS3506.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and M. D. Parker, 2010: Observations of a squall line and its near environment using high-frequency rawinsonde launches during VORTEX2. Mon. Wea. Rev., 138, 40764097, doi:10.1175/2010MWR3359.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm: Report of the Thunderstorm Project.U.S. Government Printing Office, 282 pp.

  • Chaboureau, J.-P., F. Guichard, J.-L. Redelsperger, and J.-P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 31053117, doi:10.1256/qj.03.132.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc.,139, 1–19, doi:10.1002/qj.1959.

  • Dione, C., M. Lothon, D. Badiane, B. Campistron, F. Couvreux, F. Guichard, and S. M. Sall, 2013: Phenomenology of Sahelian convection observed in Niamey during the early monsoon. Quart. J. Roy. Meteor. Soc., 140, 500–516, doi:10.1002/qj.2149.

    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849, doi:10.1175/2008MWR2528.1.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., P. Knippertz, D. J. Parker, J.-P. Chaboureau, C. Lavaysse, A. Agusti-Panareda, and L. Kergoat, 2009: The impact of a mesoscale convective system cold pool on the northward propagation of the intertropical discontinuity over West Africa. Quart. J. Roy. Meteor. Soc.,135, 139–159, doi:10.1002/qj.357.

  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Meteor. Monogr., No. 28, 323358, doi:10.1175/0065-9401-28.50.323.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317344, doi:10.1256/qj.04.147.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., and J.-P. Lafore, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part I: The models. J. Atmos. Sci., 67, 881897, doi:10.1175/2009JAS3044.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. S. Bretherton, 2011: Simulating deep convection with a shallow convection scheme. Atmos. Chem. Phys., 11, 10 38910 406, doi:10.5194/acp-11-10389-2011.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, doi:10.1175/JAS-D-12-089.1.

    • Search Google Scholar
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev.,138, 140–161, doi:10.1175/2009MWR3018.1.

  • Johnson, R. H., and M. E. Nicholls, 1983: A composite analysis of the boundary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308319, doi:10.1175/1520-0493(1983)111<0308:ACAOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kamburova, P. L., and F. H. Ludlam, 1966: Rainfall evaporation in thunderstorm downdraughts. Quart. J. Roy. Meteor. Soc., 92, 510518, doi:10.1002/qj.49709239407.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulations of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, doi:10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, doi:10.1175/JAS3723.1.

    • Search Google Scholar
    • Export Citation
  • Lima, M. A., and J. W. Wilson, 2008: Convective storm initiation in a moist tropical environment. Mon. Wea. Rev., 136, 18471864, doi:10.1175/2007MWR2279.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. L. Deal, and M. S. Kulie, 1998: Mechanisms of cell regeneration, development, and propagation within a two-dimensional multicell storm. J. Atmos. Sci., 55, 18671886, doi:10.1175/1520-0469(1998)055<1867:MOCRDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., B. Campistron, M. Chong, F. Couvreux, F. Guichard, C. Rio, and E. Williams, 2011: Life cycle of a mesoscale circular gust front observed by a C-band Doppler radar in West Africa. Mon. Wea. Rev., 139, 13701388, doi:10.1175/2010MWR3480.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, doi:10.1029/2011MS000042.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and B. Stevens, 2009: Monte Carlo spectral integration: A consistent approximation for radiative transfer in large eddy simulations. J. Adv. Model. Earth Syst.,1 (1), doi:10.3894/JAMES.2009.1.1.

  • Qian, L., G. S. Young, and W. M. Frank, 1998: A convective wake parameterization scheme for use in general circulation models. Mon. Wea. Rev., 126, 456469, doi:10.1175/1520-0493(1998)126<0456:ACWPSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J.-Y. Grandpeix, and J.-P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett.,36, L07809, doi:10.1029/2008GL036779.

  • Ross, A. N., A. M. Tompkins, and D. J. Parker, 2004: Simple models of the role of surface fluxes in convective cold pool evolution. J. Atmos. Sci., 61, 15821595, doi:10.1175/1520-0469(2004)061<1582:SMOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., C. Hohenegger, J. Schmidli, and C. Schär, 2012: Diurnal equilibrium convection and land surface–atmosphere interactions in an idealized cloud-resolving model. Quart. J. Roy. Meteor. Soc.,138, 1526–1539, doi:10.1002/qj.1892.

  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model description. Meteor. Atmos. Phys., 92, 4566, doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and T. Heus, 2013: Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys. Discuss., 13, 18551889, doi:10.5194/acpd-13-1855-2013.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42, 10041023, doi:10.1175/1520-0469(1985)042<1004:ASMOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521774, doi:10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, doi:10.1175/MWR2930.1.

    • Search Google Scholar
    • Export Citation
  • Stirling, A. J., and R. A. Stratton, 2012: Entrainment processes in the diurnal cycle of deep convection over land. Quart. J. Roy. Meteor. Soc., 138, 11351149, doi:10.1002/qj.1868.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001a: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, doi:10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001b: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, doi:10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615, doi:10.1175/2010JAS3357.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, doi:10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Warner, C., J. Simpson, D. W. Martin, D. Suchman, F. R. Mosher, and R. F. Reinking, 1979: Shallow convection on day 261 of GATE: Mesoscale arcs. Mon. Wea. Rev., 107, 16171635, doi:10.1175/1520-0493(1979)107<1617:SCODOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., S. M. Perugini, and C. W. Fairall, 1995: Convective wakes in the equatorial western Pacific during TOGA. Mon. Wea. Rev., 123, 110123, doi:10.1175/1520-0493(1995)123<0110:CWITEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67, 29432959, doi:10.1175/2010JAS3366.1.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2012: On trade wind cumulus cold pools. J. Atmos. Sci., 69, 258280, doi:10.1175/JAS-D-11-0143.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 690 296 21
PDF Downloads 609 234 20

The Formation of Wider and Deeper Clouds as a Result of Cold-Pool Dynamics

Linda SchlemmerMax Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Linda Schlemmer in
Current site
Google Scholar
PubMed
Close
and
Cathy HoheneggerMax Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Cathy Hohenegger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates how precipitation-driven cold pools aid the formation of wider clouds that are essential for a transition from shallow to deep convection. In connection with a temperature depression and a depletion of moisture inside developing cold pools, an accumulation of moisture in moist patches around the cold pools is observed. Convective clouds are formed on top of these moist patches. Larger moist patches form with time supporting more and larger clouds. Moreover, enhanced vertical lifting along the leading edges of the gravity current triggered by the cold pool is found. The interplay of moisture aggregation and lifting eventually promotes the formation of wider clouds that are less affected by entrainment and become deeper. These mechanisms are corroborated in a series of cloud-resolving model simulations representing different atmospheric environments. A positive feedback is observed in that, in an atmosphere in which cloud and rain formation is facilitated, stronger downdrafts will form. These stronger downdrafts lead to a stronger modification of the moisture field, which in turn favors further cloud development. This effect is not only observed in the transition phase but also active in prolonging the peak time of precipitation in the later stages of the diurnal cycle. These findings are used to propose a simple way for incorporating the effect of cold pools on cloud sizes and thereby entrainment rate into parameterization schemes for convection. Comparison of this parameterization to the cloud-resolving modeling output gives promising results.

Corresponding author address: Linda Schlemmer, Max Planck Institute for Meteorology, Bundesstr. 53, Hamburg 20146, Germany. E-mail: linda.schlemmer@mpimet.mpg.de

Abstract

This study investigates how precipitation-driven cold pools aid the formation of wider clouds that are essential for a transition from shallow to deep convection. In connection with a temperature depression and a depletion of moisture inside developing cold pools, an accumulation of moisture in moist patches around the cold pools is observed. Convective clouds are formed on top of these moist patches. Larger moist patches form with time supporting more and larger clouds. Moreover, enhanced vertical lifting along the leading edges of the gravity current triggered by the cold pool is found. The interplay of moisture aggregation and lifting eventually promotes the formation of wider clouds that are less affected by entrainment and become deeper. These mechanisms are corroborated in a series of cloud-resolving model simulations representing different atmospheric environments. A positive feedback is observed in that, in an atmosphere in which cloud and rain formation is facilitated, stronger downdrafts will form. These stronger downdrafts lead to a stronger modification of the moisture field, which in turn favors further cloud development. This effect is not only observed in the transition phase but also active in prolonging the peak time of precipitation in the later stages of the diurnal cycle. These findings are used to propose a simple way for incorporating the effect of cold pools on cloud sizes and thereby entrainment rate into parameterization schemes for convection. Comparison of this parameterization to the cloud-resolving modeling output gives promising results.

Corresponding author address: Linda Schlemmer, Max Planck Institute for Meteorology, Bundesstr. 53, Hamburg 20146, Germany. E-mail: linda.schlemmer@mpimet.mpg.de
Save