• Brown, D., R. Brownrigg, M. Haley, and W. Huang, 2013: NCAR command language version 6.1.2. UCAR/NCAR Computational and Information Systems Laboratory, doi:10.5065/D6WD3XH5.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and I. M. Held, 1989: Barotropic decay of baroclinic waves in a two-layer beta-plane model. J. Atmos. Sci., 46, 34163430, doi:10.1175/1520-0469(1989)046<3416:BDOBWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1965: The influence of viscous boundary layers on transient motions in a stratified rotating fluid. Part I. J. Atmos. Sci., 22, 402411, doi:10.1175/1520-0469(1965)022<0402:TIOVBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • James, I. N., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44, 37103720, doi:10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • James, I. N., and L. J. Gray, 1986: Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quart. J. Roy. Meteor. Soc., 112, 12311250, doi:10.1002/qj.49711247417.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., and B. J. Hoskins, 1982: Three dimensional propagation of planetary waves. J. Meteor. Soc. Japan, 60, 109123.

  • Kim, H.-K., and S. Lee, 2004: The wave–zonal mean flow interaction in the Southern Hemisphere. J. Atmos. Sci., 61, 10551067, doi:10.1175/1520-0469(2004)061<1055:TWMFII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Köhler, M., M. Ahlgrimm, and A. Beljaars, 2011: Unified treatment of dry convective stratocumulus-topped boundary layers in the ECMWF model. Quart. J. Roy. Meteor. Soc., 137, 4357, doi:10.1002/qj.713.

    • Search Google Scholar
    • Export Citation
  • Lachmy, O., and N. Harnik, 2009: A wave amplitude transition in a quasi-linear model with radiative forcing and surface drag. J. Atmos. Sci., 66, 34793490, doi:10.1175/2009JAS3157.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 2010a: Finite-amplitude equilibration of baroclinic waves on a jet. J. Atmos. Sci., 67, 434451, doi:10.1175/2009JAS3201.1.

  • Lee, S., 2010b: Dissipative energization of baroclinic waves by surface Ekman pumping. J. Atmos. Sci., 67, 22512259, doi:10.1175/2010JAS3295.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and I. M. Held, 1991: Subcritical instability and hysteresis in a two-layer model. J. Atmos. Sci., 48, 10711077, doi:10.1175/1520-0469(1991)048<1071:SIAHIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, L., A. P. Ingersoll, X. Jiang, D. Feldman, and Y. L. Yung, 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, L16813, doi:10.1029/2007GL029985.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and R. I. Sykes, 1978: On the interaction of topography and Ekman boundary layer pumping in a stratified atmosphere. Quart. J. Roy. Meteor. Soc., 104, 475490, doi:10.1002/qj.49710444018.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moon, W., and S. B. Feldstein, 2009: Two types of baroclinic life cycles during the Southern Hemisphere summer. J. Atmos. Sci., 66, 14011417, doi:10.1175/2008JAS2826.1.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1983: Global Atmospheric Circulation Statistics, 1958-1973. U.S. Government Printing Office, 180 pp.

  • Palmer, T. N., 1982: Properties of the Eliassen-Palm flux for planetary-scale motions. J. Atmos. Sci., 39, 992997.

  • Peixoto, J. P., and A. H. Oort, 1974: The annual distribution of atmospheric energy on a planetary scale. J. Geophys. Res., 79, 21492159, doi:10.1029/JC079i015p02149.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and J. L. Stanford, 1985: The observed life cycle of a baroclinic instability. J. Atmos. Sci., 42, 13641373, doi:10.1175/1520-0469(1985)042<1364:TOLCOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., and A. Joly, 2006: Role of the low-frequency field on the explosive growth of extratropical cyclones at the jet exit. Part II: Baroclinic critical region. J. Atmos. Sci., 63, 19821995, doi:10.1175/JAS3729.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1980: Barotropic influences on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci., 37, 16791684, doi:10.1175/1520-0469(1980)037<1679:BIOTGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 42 8
PDF Downloads 107 27 3

Ekman Pumping and the Energetics of the Southern Hemisphere Eddy Life Cycle

Cory BaggettDepartment of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Cory Baggett in
Current site
Google Scholar
PubMed
Close
and
Sukyoung LeeDepartment of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, and Seoul National University, Seoul, South Korea

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the framework of the Lorenz energy cycle, the climatological and eddy life cycle characteristics of the generation of eddy available potential energy through Ekman pumping (EEPE) are evaluated using Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data (1979–2011). EEPE exhibits an annual cycle that is maximized during a given hemisphere’s winter, with maximum values in the midtroposphere of the midlatitudes.

Spectral analysis of the Southern Hemisphere storm track reveals that positive EEPE is associated with an anomalously small vertical phase tilt. A composite analysis of the Southern Hemisphere eddy life cycle reveals a maximum in EEPE that occurs after the peak eddy amplitude. Eddy life cycles during winter with large values of EEPE have higher values of eddy available potential energy and eddy kinetic energy than life cycles with small EEPE. However, baroclinic energy conversion remains unenhanced in life cycles with large values of EEPE. The lack of enhancement of baroclinic conversion is related to the small vertical phase tilt associated with positive EEPE. Instead, barotropic energy conversion is muted, and it is this muted barotropic decay that results in an amplification of eddy kinetic energy. There is no evidence of reflecting critical latitudes playing a role in this reduction of barotropic decay, as found in previous modeling studies. Rather, during Southern Hemisphere winter, this reduction coincides with the presence of a turning latitude on the equatorward side of the storm track.

Corresponding author address: Cory Baggett, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: cfb128@psu.edu

Abstract

In the framework of the Lorenz energy cycle, the climatological and eddy life cycle characteristics of the generation of eddy available potential energy through Ekman pumping (EEPE) are evaluated using Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data (1979–2011). EEPE exhibits an annual cycle that is maximized during a given hemisphere’s winter, with maximum values in the midtroposphere of the midlatitudes.

Spectral analysis of the Southern Hemisphere storm track reveals that positive EEPE is associated with an anomalously small vertical phase tilt. A composite analysis of the Southern Hemisphere eddy life cycle reveals a maximum in EEPE that occurs after the peak eddy amplitude. Eddy life cycles during winter with large values of EEPE have higher values of eddy available potential energy and eddy kinetic energy than life cycles with small EEPE. However, baroclinic energy conversion remains unenhanced in life cycles with large values of EEPE. The lack of enhancement of baroclinic conversion is related to the small vertical phase tilt associated with positive EEPE. Instead, barotropic energy conversion is muted, and it is this muted barotropic decay that results in an amplification of eddy kinetic energy. There is no evidence of reflecting critical latitudes playing a role in this reduction of barotropic decay, as found in previous modeling studies. Rather, during Southern Hemisphere winter, this reduction coincides with the presence of a turning latitude on the equatorward side of the storm track.

Corresponding author address: Cory Baggett, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: cfb128@psu.edu
Save