• Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827, doi:10.5194/acp-11-817-2011.

    • Search Google Scholar
    • Export Citation
  • Braesicke, P., and J. A. Pyle, 2004: Sensitivity of dynamics and ozone to different representations of SSTs in the Unified Model. Quart. J. Roy. Meteor. Soc., 130, 20332045, doi:10.1256/qj.03.183.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741, doi:10.1007/s00382-006-0162-4.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374, doi:10.1175/2010JCLI3404.1.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2011: Multimodel climate and variability of the stratosphere. J. Geophys. Res.,116, D05102, doi:10.1029/2010JD014995.

  • Calvo, N., and R. R. Garcia, 2009: Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases. J. Atmos. Sci., 66, 31843196, doi:10.1175/2009JAS3085.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Deckert, R., and M. Dameris, 2008: Higher tropical SSTs strengthen the tropical upwelling via deep convection. Geophys. Res. Lett., 35, L10813, doi:10.1029/2008GL033719.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., T. G. Shepherd, and D. W. Waugh, Eds., 2010: SPARC report on the evaluation of chemistry climate models. SPARC Rep. 5, WCRP-132, WMO/TD-1526, 305 pp. [Available online at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no5/.]

  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739, doi:10.1175/2008JAS2712.1.

    • Search Google Scholar
    • Export Citation
  • Garny, H., M. Dameris, W. Randel, G. E. Bodeker, and R. Deckert, 2011: Dynamically forced increase of tropical upwelling in the lower stratosphere. J. Atmos. Sci., 68, 12141233, doi:10.1175/2011JAS3701.1.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S., N. Butchart, and N. Calvo, 2014: The morphology of the Brewer–Dobson circulation and its response to climate change in CMIP5 simulations. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2258, in press.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci.,48, 651–680, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

  • Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25, 14131430, doi:10.1175/JCLI-D-11-00078.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1990: On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci., 47, 392395, doi:10.1175/1520-0469(1990)047<0392:OTGEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Lean, J., G. Rottman, J. Harder, and G. Kopp, 2005: SORCE contributions to new understanding of global change and solar variability. Sol. Phys., 230, 2753, doi:10.1007/s11207-005-1527-2.

    • Search Google Scholar
    • Export Citation
  • Li, F., J. Austin, and J. Wilson, 2008: The strength of the Brewer–Dobson circulation in a changing climate: Coupled chemistry–climate model simulations. J. Climate, 21, 40–57, doi:10.1175/2007JCLI1663.1.

    • Search Google Scholar
    • Export Citation
  • Lin, P., and Q. Fu, 2013: Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res. Atmos., 118, 7384, doi:10.1029/2012JD018813.

    • Search Google Scholar
    • Export Citation
  • Marsh, D., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 7372–7391, doi:10.1175/JCLI-D-12-00558.1.

    • Search Google Scholar
    • Export Citation
  • Matthes, K., D. R. Marsh, R. R. Garcia, D. E. Kinnison, F. Sassi, and S. Walters, 2010: Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. J. Geophys. Res.,115, D18110, doi:10.1029/2009JD013020.

  • McLandress, C., and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22, 1516–1540, doi:10.1175/2008JCLI2679.1.

    • Search Google Scholar
    • Export Citation
  • Olsen, M. A., M. R. Schoeberl, and J. E. Nielsen, 2007: Response of stratospheric circulation and stratosphere–troposphere exchange to changing sea surface temperatures. J. Geophys. Res., 112, D16104, doi:10.1029/2006JD008012.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 51735191, doi:10.1029/94JD03122.

    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., N. Butchart, and S. C. Hardiman, 2012: The Brewer–Dobson circulation inferred from ERA-Interim. Quart. J. Roy. Meteor. Soc., 138, 878888, doi:10.1002/qj.966.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784–797, doi:10.1175/2010JAS3608.1.

    • Search Google Scholar
    • Export Citation
  • Tilmes, S., R. R. Garcia, D. E. Kinnison, A. Gettelman, and P. J. Rasch, 2009: Impact of geoengineered aerosols on the troposphere and stratosphere. J. Geophys. Res.,114, D12305, doi:10.1029/2008JD011420.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 105 46 9
PDF Downloads 58 24 1

Future Changes in the Brewer–Dobson Circulation under Different Greenhouse Gas Concentrations in WACCM4

Froila M. PalmeiroDepartamento de Física de la Tierra II, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by Froila M. Palmeiro in
Current site
Google Scholar
PubMed
Close
,
Natalia CalvoDepartamento de Física de la Tierra II, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by Natalia Calvo in
Current site
Google Scholar
PubMed
Close
, and
Rolando R. GarciaAtmospheric Chemistry Division, NCAR,* Boulder, Colorado

Search for other papers by Rolando R. Garcia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The climatology and future changes of the Brewer–Dobson circulation (BDC) in three climate change scenarios are studied using the latest version of the Whole Atmosphere Community Climate Model (WACCM4), which is fully coupled to an ocean model. The results show an acceleration in both the shallow and deep branches of circulation in response to increasing greenhouse gases (GHGs) together with an upward displacement of the tropical upwelling in the deep branch near the stratopause. The downward control principle reveals that different waves are involved in forcing the acceleration of the upper and lower branches. Climatological-mean tropical upwelling in both the lower and upper stratosphere is dominated by explicitly resolved, planetary-scale waves. Trends in the tropical upwelling in the lower stratosphere are mainly attributed to explicitly resolved, planetary-scale waves. However, in the upper stratosphere, despite the fact that resolved waves control the forcing of the climatological upwelling, their contribution to the long-term trend diminishes with increasing GHGs, while the role of gravity waves associated with fronts increases and becomes dominant in the model scenario with the largest GHG increases. The intensification and upward displacement of the subtropical tropospheric jets due to climate change leads to filtering of the westerly part of the frontal gravity wave spectrum, leaving the easterly components to reach the upper stratosphere and force the changes in the circulation there.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Froila Palmeiro, Universidad Complutense de Madrid, Dpto. de Física de la Tierra, Astronomía y Astrofísica II, Plaza Ciencias, s/n Madrid, Madrid 28040, Spain. E-mail: froipalm@ucm.es

Abstract

The climatology and future changes of the Brewer–Dobson circulation (BDC) in three climate change scenarios are studied using the latest version of the Whole Atmosphere Community Climate Model (WACCM4), which is fully coupled to an ocean model. The results show an acceleration in both the shallow and deep branches of circulation in response to increasing greenhouse gases (GHGs) together with an upward displacement of the tropical upwelling in the deep branch near the stratopause. The downward control principle reveals that different waves are involved in forcing the acceleration of the upper and lower branches. Climatological-mean tropical upwelling in both the lower and upper stratosphere is dominated by explicitly resolved, planetary-scale waves. Trends in the tropical upwelling in the lower stratosphere are mainly attributed to explicitly resolved, planetary-scale waves. However, in the upper stratosphere, despite the fact that resolved waves control the forcing of the climatological upwelling, their contribution to the long-term trend diminishes with increasing GHGs, while the role of gravity waves associated with fronts increases and becomes dominant in the model scenario with the largest GHG increases. The intensification and upward displacement of the subtropical tropospheric jets due to climate change leads to filtering of the westerly part of the frontal gravity wave spectrum, leaving the easterly components to reach the upper stratosphere and force the changes in the circulation there.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Froila Palmeiro, Universidad Complutense de Madrid, Dpto. de Física de la Tierra, Astronomía y Astrofísica II, Plaza Ciencias, s/n Madrid, Madrid 28040, Spain. E-mail: froipalm@ucm.es
Save