• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499, doi:10.1175/JAMC-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., and J. D. Scott, 1996: Atlas of climatology and variability in the GFDL R30S14 GCM. U.S. Government Printing Office Doc. 1996-774-842, 121 pp.

  • Becker, E., and G. Schmitz, 2001: Interaction between extratropical stationary waves and the zonal mean circulation. J. Atmos. Sci., 58, 462480, doi:10.1175/1520-0469(2001)058<0462:IBESWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climatelike thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2001: GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season. J. Atmos. Sci., 58, 17841800, doi:10.1175/1520-0469(2001)058<1784:GAODOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2006: An idealized nonlinear model of the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 63, 18181839, doi:10.1175/JAS3726.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2009: Diabatic and orographic forcing of northern winter stationary waves and storm tracks. J. Climate, 22, 670688, doi:10.1175/2008JCLI2403.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, X. Xia, and M. Zheng, 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate,26, 246–260, doi:10.1175/JCLI-D-11-00707.1.

  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, doi:10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000: Is interannual zonal mean flow variability simply climate noise? J. Climate, 13, 23562362, doi:10.1175/1520-0442(2000)013<2356:IIZMFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55, 30773086, doi:10.1175/1520-0469(1998)055<3077:ITAZID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311, doi:10.1175/JAS4006.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., L. M. Polvani, and D. Ancukiewicz, 2008a: Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett., 35, L22707, doi:10.1029/2008GL035712.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., S. Voronin, and L. Polvani, 2008b: Testing the annular mode autocorrelation time scale in simple atmospheric general circulation models. Mon. Wea. Rev., 136, 15231536, doi:10.1175/2007MWR2211.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, C. T., and W. F. Stern, 1982: A description of the GFDL global spectral model. Mon. Wea. Rev., 110, 625644, doi:10.1175/1520-0493(1982)110<0625:ADOTGG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., 2010: Storm tracks in the Southern Hemisphere: Strength and trends. Ph.D. dissertation, Stony Brook University, 167 pp.

  • Guo, Y., E. K. M. Chang, and S. S. Leroy, 2009: How strong are the Southern Hemisphere storm tracks? Geophys. Res. Lett., 36, L22806, doi:10.1029/2009GL040733.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., L. E. Branscome, and D. A. Stewart, 1992: Life cycles of moist baroclinic eddies. J. Atmos. Sci., 49, 306319, doi:10.1175/1520-0469(1992)049<0306:LCOMBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., M. Blackburn, and R. Day, 2005: The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Climate, 18, 36723685, doi:10.1175/JCLI3472.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1995: A PV view of the zonal flow vacillation. J. Atmos. Sci., 52, 25612576, doi:10.1175/1520-0469(1995)052<2561:APVOZF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, doi:10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation datasets. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, S. Curtis, R. Joyce, B. Mc-Gavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1990: The role of transient eddies in low-frequency zonal variations of the Southern Hemisphere. Tellus, 42, 4150, doi:10.1034/j.1600-0870.1990.00005.x.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1988: Indices of the Southern Hemisphere zonal wind. J. Climate, 1, 183194, doi:10.1175/1520-0442(1988)001<0183:IOTSHZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., and M. R. Sinclair, 1995: The influence of persistent anomalies on Southern Hemisphere storm tracks. J. Climate, 8, 19381950, doi:10.1175/1520-0442(1995)008<1938:TIOPAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and L. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, doi:10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1975: Climate response and fluctuation dissipation. J. Atmos. Sci., 32, 20222026, doi:10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, doi:10.1029/1999GL010478.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbation in a relatively simple general circulation model. Geophys. Res. Lett., 29, L18701, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Ring, M. J., and R. A. Plumb, 2007: Forced annular mode patterns in a simple atmospheric general circulation model. J. Atmos. Sci., 64, 36113626, doi:10.1175/JAS4031.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1994: Eddy feedbacks on the zonal index and eddy–zonal flow interactions induced by zonal flow transience. J. Atmos. Sci., 51, 25532562, doi:10.1175/1520-0469(1994)051<2553:EFOTZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1996: Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci., 53, 35563569, doi:10.1175/1520-0469(1996)053<3556:DEFSVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415422, doi:10.1175/1520-0469(2000)057<0415:ABMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shiotani, M., 1990: Low-frequency variation of the zonal mean state of the Southern Hemisphere troposphere. J. Meteor. Soc. Japan, 68, 461471.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., M. Blackburn, J. D. Haigh, and S. N. Sparrow, 2010: The impact of the troposphere on the response to stratospheric heating in a simplified GCM. J. Climate, 23, 61666185, doi:10.1175/2010JCLI3792.1.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, doi:10.1126/science.1155939.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wallace, J. M., G. H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks, and baroclinic waveguides. J. Atmos. Sci., 45, 439462, doi:10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and E. K. M. Chang, 2007: Eddy-zonal flow feedback in the Southern Hemisphere winter and summer. J. Atmos. Sci., 64, 30913112, doi:10.1175/JAS4005.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci., 50, 32443259, doi:10.1175/1520-0469(1993)050<3244:ZFVAEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 45 4
PDF Downloads 96 32 2

Diabatic Damping of Zonal Index Variations

Xiaoming XiaSchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Xiaoming Xia in
Current site
Google Scholar
PubMed
Close
and
Edmund K. M. ChangSchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Edmund K. M. Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Zonal index variations, or north–south shifts of the midlatitude jet, are the dominant mode of zonal wind variability in the Southern Hemisphere. Previous studies have shown that synoptic-time-scale eddy momentum flux provides a positive feedback and acts to increase the persistence and low-frequency variance of the zonal index. However, the impact of diabatic heating due to the precipitation associated with these eddies has not been investigated. In this study, regression analyses have been conducted to demonstrate that a robust precipitation anomaly can be found to accompany the jet and eddy momentum flux anomalies associated with a poleward shift of the jet, with enhanced precipitation on the poleward flank of the jet and reduced precipitation on the equatorward flank. Diabatic heating associated with such a precipitation anomaly is expected to reduce the temperature gradient across the jet anomaly, thus decreasing eddy generation and damping the anomaly. This expectation is confirmed by three sets of mechanistic model experiments, using three different ways to mimic the impact of moist heating in a dry model. Results of this study suggest that diabatic heating provides a negative feedback to zonal index variations, partially offsetting the positive feedback provided by eddy momentum flux. These results could partially explain why zonal index variations have been found to be very persistent in dry mechanistic model experiments since this negative diabatic feedback is absent in dry models. These results suggest that these models may be overly sensitive to climate forcings that produce a jet shift response.

Corresponding author address: Edmund K. M. Chang, School of Marine and Atmospheric Sciences, Stony Brook University, 101 Endeavour Hall, Stony Brook, NY 11794-5000. E-mail: kar.chang@stonybrook.edu

Abstract

Zonal index variations, or north–south shifts of the midlatitude jet, are the dominant mode of zonal wind variability in the Southern Hemisphere. Previous studies have shown that synoptic-time-scale eddy momentum flux provides a positive feedback and acts to increase the persistence and low-frequency variance of the zonal index. However, the impact of diabatic heating due to the precipitation associated with these eddies has not been investigated. In this study, regression analyses have been conducted to demonstrate that a robust precipitation anomaly can be found to accompany the jet and eddy momentum flux anomalies associated with a poleward shift of the jet, with enhanced precipitation on the poleward flank of the jet and reduced precipitation on the equatorward flank. Diabatic heating associated with such a precipitation anomaly is expected to reduce the temperature gradient across the jet anomaly, thus decreasing eddy generation and damping the anomaly. This expectation is confirmed by three sets of mechanistic model experiments, using three different ways to mimic the impact of moist heating in a dry model. Results of this study suggest that diabatic heating provides a negative feedback to zonal index variations, partially offsetting the positive feedback provided by eddy momentum flux. These results could partially explain why zonal index variations have been found to be very persistent in dry mechanistic model experiments since this negative diabatic feedback is absent in dry models. These results suggest that these models may be overly sensitive to climate forcings that produce a jet shift response.

Corresponding author address: Edmund K. M. Chang, School of Marine and Atmospheric Sciences, Stony Brook University, 101 Endeavour Hall, Stony Brook, NY 11794-5000. E-mail: kar.chang@stonybrook.edu
Save