• Baines, P. G., 1987: Upstream blocking and airflow over mountains. Annu. Rev. Fluid Mech., 19, 7595, doi:10.1146/annurev.fl.19.010187.000451.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1995: Topographic Effects in Stratified Flow.Cambridge Monographs on Mechanics, Cambridge University Press, 482 pp.

  • Bauer, M. H., G. J. Mayr, I. Vergeiner, and H. Pichler, 2000: Strongly nonlinear flow over and around a three-dimensional mountain as a function of the horizontal aspect ratio. J. Atmos. Sci., 57, 39713991, doi:10.1175/1520-0469(2001)058<3971:SNFOAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., C. Pardoe, and F. F. Hill, 1975: The nature of orographic rain at wintertime cold fronts. Quart. J. Roy. Meteor. Soc., 101, 333352, doi:10.1002/qj.49710142815.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, doi:10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain,Meteor. Monogr., No. 45, Amer. Meteor. Soc., 5981.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158, doi:10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., 2008: Orographic clouds in terrain-blocked flows: An idealized modeling study. J. Atmos. Sci., 65, 34603478, doi:10.1175/2008JAS2435.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci., 66, 508518, doi:10.1175/2008JAS2689.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301316, doi:10.1034/j.1600-0870.2003.00025.x.

  • Jiang, Q., 2006: Precipitation over concave terrain. J. Atmos. Sci., 63, 22692288, doi:10.1175/JAS3761.1.

  • Jiang, Q., and R. B. Smith, 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60, 15341559, doi:10.1175/2995.1.

  • Kirshbaum, D. J., and A. L. M. Grant, 2012: Invigoration of cumulus cloud fields by mesoscale ascent. Quart. J. Roy. Meteor. Soc., 138, 21362150, doi:10.1002/qj.1954.

    • Search Google Scholar
    • Export Citation
  • Landvogt, P. K., J. A. T. Bye, and T. P. Lane, 2008: An investigation of recent orographic precipitation events in northeast Victoria. Aust. Meteor. Mag., 57, 235247.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1980: Winter storms over the San Juan Mountains. Part I: Dynamical processes. J. Appl. Meteor., 19, 913926, doi:10.1175/1520-0450(1980)019<0913:WSOTSJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M., and A. Buzzi, 2001: A numerical study of moist stratified flows over isolated topography. Tellus, 53A, 481499, doi:10.1111/j.1600-0870.2001.00481.x.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M., and R. Rotunno, 2005: Simulations of moist nearly neutral flow over a ridge. J. Atmos. Sci., 62, 14101427, doi:10.1175/JAS3410.1.

    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., and P. Bougeault, 1996: Nonlinear flow past an elliptic mountain ridge. J. Atmos. Sci., 53, 24652489, doi:10.1175/1520-0469(1996)053<2465:NFPAEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003, doi:10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., P. Smolarkiewicz, and J. Warner, 1989: On the dynamics of Hawaiian cloud bands: Comparison of model results with observations and island climatology. J. Atmos. Sci., 46, 15891608, doi:10.1175/1520-0469(1989)046<1589:OTDOHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

  • Rotunno, R., and R. Ferretti, 2001: Mechanisms of intense alpine rainfall. J. Atmos. Sci., 58, 17321749, doi:10.1175/1520-0469(2001)058<1732:MOIAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. A. Houze, 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 811830, doi:10.1002/qj.67.

    • Search Google Scholar
    • Export Citation
  • Sénési, S., P. Bougeault, J.-L. Chèze, P. Cosentino, and R.-M. Thepenier, 1996: The Vaison-La-Romaine flood: Mesoscale analysis and predictability issues. Wea. Forecasting, 11, 417442, doi:10.1175/1520-0434(1996)011<0417:TVLRFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32A, 348364, doi:10.1111/j.2153-3490.1980.tb00962.x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41, doi:10.1016/S0065-2687(08)60052-7.

  • Smith, R. B., 2006: Progress on the theory of orographic precipitation. Tectonics, Climate, and Landscape Evolution, S. D. Willett et al., Eds., GSA Special Papers, Vol. 398, Geological Society of America, 1–17, doi:10.1130/2006.2398(01).

  • Smith, R. B., and J. P. Evans, 2007: Orographic precipitation and water vapor fractionation over the southern Andes. J. Hydrometeor., 8, 319, doi:10.1175/JHM555.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., I. Barstad, and L. Bonneau, 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62, 177191, doi:10.1175/JAS-3376.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 2012: Orographic precipitation in the tropics: The Dominica experiment. Bull. Amer. Meteor. Soc., 93, 15671579, doi:10.1175/BAMS-D-11-00194.1.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1990: Low Froude number flow past three-dimensional obstacles. Part II: Upwind flow reversal zone. J. Atmos. Sci., 47, 14981511, doi:10.1175/1520-0469(1990)047<1498:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watson, C. D., and T. P. Lane, 2012: Sensitivities of orographic precipitation to terrain geometry and upstream conditions in idealized simulations. J. Atmos. Sci., 69, 12081231, doi:10.1175/JAS-D-11-0198.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 102 46 2
PDF Downloads 49 20 0

Further Sensitivities of Orographic Precipitation to Terrain Geometry in Idealized Simulations

Campbell D. WatsonDepartment of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Campbell D. Watson in
Current site
Google Scholar
PubMed
Close
and
Todd P. LaneSchool of Earth Sciences, and Australian Research Council Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Todd P. Lane in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines how variations to the nondimensional mountain height Ĥ and the horizontal aspect ratio β of a straight ridge and a concave ridge influence orographic precipitation. An idealized three-dimensional model is used to simulate a moist flow impinging upon these two ridges with Ĥ = 0.66–2.0 and β = 1.0–8.0. The concave ridge generates substantially more precipitation than the straight ridge via an established precipitation-enhancing funneling mechanism near the ridge vertex when the flow is unblocked. Based on previous work, it was hypothesized that when the approaching flow becomes blocked, the strength of the precipitation enhancement by the concave ridge relative to the straight ridge becomes negligible. This study reveals that, if Ĥ is sufficiently large to induce flow reversal on the windward slope, then a secondary circulation develops that is strengthened by the concave ridge with a subsequent enhancement of precipitation. It is also shown that the competing effects of the ridge length and width render the strength of the precipitation enhancement largely insensitive to β. A flow regime diagram for the straight ridge and the concave ridge is also constructed to illustrate the sensitivity of the critical Ĥ value for flow regime transition to changes in the terrain geometry; variations to the low-level relative humidity are also explored.

Corresponding author address: Campbell D. Watson, Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, CT 06511. E-mail: campbell.watson@yale.edu

Abstract

This study examines how variations to the nondimensional mountain height Ĥ and the horizontal aspect ratio β of a straight ridge and a concave ridge influence orographic precipitation. An idealized three-dimensional model is used to simulate a moist flow impinging upon these two ridges with Ĥ = 0.66–2.0 and β = 1.0–8.0. The concave ridge generates substantially more precipitation than the straight ridge via an established precipitation-enhancing funneling mechanism near the ridge vertex when the flow is unblocked. Based on previous work, it was hypothesized that when the approaching flow becomes blocked, the strength of the precipitation enhancement by the concave ridge relative to the straight ridge becomes negligible. This study reveals that, if Ĥ is sufficiently large to induce flow reversal on the windward slope, then a secondary circulation develops that is strengthened by the concave ridge with a subsequent enhancement of precipitation. It is also shown that the competing effects of the ridge length and width render the strength of the precipitation enhancement largely insensitive to β. A flow regime diagram for the straight ridge and the concave ridge is also constructed to illustrate the sensitivity of the critical Ĥ value for flow regime transition to changes in the terrain geometry; variations to the low-level relative humidity are also explored.

Corresponding author address: Campbell D. Watson, Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, CT 06511. E-mail: campbell.watson@yale.edu
Save