• Barros, A. P., O. P. Prat, P. Shrestha, F. Y. Testik, and L. F. Bliven, 2008: Revisiting Low and List (1982): Evaluation of raindrop collision parameterizations using laboratory observations and modeling. J. Atmos. Sci., 65, 29832993, doi:10.1175/2008JAS2630.1.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. T. Ochs, 1995: Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites. J. Atmos. Sci., 52, 39773996, doi:10.1175/1520-0469(1995)052<3977:CBSPDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Best, A. C., 1950: Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Quart. J. Roy. Meteor. Soc., 76, 302311, doi:10.1002/qj.49707632905.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1970: A fast, approximate method for integrating the stochastic coalescence equation. J. Geophys. Res., 75, 51655171, doi:10.1029/JC075i027p05165.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293, doi:10.1175/1520-0469(1998)055<2284:AFMFTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284294, doi:10.1175/1520-0469(2000)057<0284:AFMFTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 2001: A new method for the solution of the stochastic collection equation in cloud models with spectral aerosol and cloud drop microphysics. Atmos. Res., 59–60, 361372, doi:10.1016/S0169-8095(01)00125-9.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461475, doi:10.1175/1520-0450(2004)043<0461:DSDRWP>2.0.CO;2; Corrigendum, 44, 186, doi:10.1175/1520-0450(2005)44<186:C>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. 1st ed. Cambridge University Press, 636 pp.

  • Brown, P. S., 1987: Parameterization of drop-spectrum evolution due to coalescence and breakup. J. Atmos. Sci., 44, 242249, doi:10.1175/1520-0469(1987)044<0242:PODSED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, P. S., 1988: The effects of filament, sheet, and disk breakup upon the drop spectrum. J. Atmos. Sci., 45, 712718, doi:10.1175/1520-0469(1988)045<0712:TEOFSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, P. S., 1993: Analysis and parameterization of the combined coalescence, breakup, and evaporation processes. J. Atmos. Sci., 50, 29402951, doi:10.1175/1520-0469(1993)050<2940:AAPOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, P. S., 1997: Mass conservation considerations in analytic representation of raindrop fragment distributions. J. Atmos. Sci., 54, 16751687, doi:10.1175/1520-0469(1997)054<1675:MCCIAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. A. Brandes, T. J. Schuur, A. V. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, doi:10.1175/2008JAMC1732.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., Y. Hong, J. Gourley, Y. Qi, J. Zhang, Y. Wen, and P.-E. Kirstetter, 2013: Statistical and physical analysis of the vertical structure of precipitation in the mountainous west region of the United States using 11+ years of spaceborne observations from TRMM precipitation radar. J. Appl. Meteor. Climatol., 52, 408424, doi:10.1175/JAMC-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, doi:10.1175/2009MWR2956.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Feingold, G., S. Tzivion, and Z. Leviv, 1988: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments. J. Atmos. Sci., 45, 33873399, doi:10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., W.-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52, 10011033, doi:10.1175/1520-0469(1995)052<1001:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916, doi:10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374, doi:10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783, doi:10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2011: Numerical solution to drop coalescence/breakup with a volume-conserving, positive-definite, and unconditionally stable scheme. J. Atmos. Sci., 68, 334346, doi:10.1175/2010JAS3605.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, doi:10.15191/nwajom.2013.0120.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, doi:10.15191/nwajom.2013.0121.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 12471267, doi:10.1175/2010JAMC2243.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, doi:10.1175/JAS-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • List, R., and J. R. Gillespie, 1976: Evolution of raindrop spectra with collision-induced breakup. J. Atmos. Sci., 33, 20072013, doi:10.1175/1520-0469(1976)033<2007:EORSWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • List, R., and G. M. McFarquhar, 1990: The evolution of three-peak raindrop size distributions in one-dimensional shaft models. Part I: Single-pulse rain. J. Atmos. Sci., 47, 29963006, doi:10.1175/1520-0469(1990)047<2996:TEOTPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • List, R., N. R. Donaldson, and R. E. Stewart, 1987: Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain. J. Atmos. Sci., 44, 362372, doi:10.1175/1520-0469(1987)044<0362:TEODST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982a: Collision, coalescence, and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 15911606, doi:10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982b: Collision, coalescence, and breakup of raindrops. Part II: Parameterization of fragment size distributions. J. Atmos. Sci., 39, 16071619, doi:10.1175/1520-0469(1982)039<1607:CCABOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, doi:10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., 2004: A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions. J. Atmos. Sci., 61, 777794, doi:10.1175/1520-0469(2004)061<0777:ANROCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, J. D., and R. List, 1975: Collision and breakup of water drops at terminal velocity. J. Atmos. Sci., 32, 14011411, doi:10.1175/1520-0469(1975)032<1401:CABOWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, doi:10.1364/AO.39.001026.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. A. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, doi:10.1175/MWR-D-11-00283.1.

    • Search Google Scholar
    • Export Citation
  • Ochs, H. T., K. V. Beard, R. R. Czys, N. F. Laird, D. E. Schaufelberger, and D. J. Holdridge, 1995: Collisions between small precipitation drops. Part I: Laboratory measurements of bounce, coalescence, and temporary coalescence. J. Atmos. Sci., 52, 22582275, doi:10.1175/1520-0469(1995)052<2258:CBSPDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2007a: Exploring the use of a column model for the characterization of microphysical processes in warm rain: Results from a homogeneous rainshaft model. Adv. Geosci., 10, 145152, doi:10.5194/adgeo-10-145-2007.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2007b: A robust numerical solution of the stochastic collection–breakup equation for warm rain. J. Appl. Meteor. Climatol., 46, 14801497, doi:10.1175/JAM2544.1.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2009: Exploring the transient behavior of ZR relationships: Implications for radar rainfall estimation. J. Appl. Meteor. Climatol., 48, 21272143, doi:10.1175/2009JAMC2165.1.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and C. R. Williams, 2008: An intercomparison of model simulations and VPR estimates of the vertical structure of warm stratiform rainfall during TWP-ICE. J. Appl. Meteor. Climatol., 47, 27972815, doi:10.1175/2008JAMC1801.1.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and F. Y. Testik, 2012: On the influence of raindrop collision outcomes on equilibrium drop size distributions. J. Atmos. Sci., 69, 15341546, doi:10.1175/JAS-D-11-0192.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation.2nd ed. Kluwer Academic Publishers, 954 pp.

  • Ryzhkov, A. V., 2001: Interpretation of polarimetric radar covariance matrix for meteorological scatterers: Theoretical analysis. J. Atmos. Oceanic Technol., 18, 315328, doi:10.1175/1520-0426(2001)018<0315:IOPRCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, J. C. Hubbert, V. N. Bringi, J. Vivekanandan, and E. A. Brandes, 2002: Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. J. Atmos. Oceanic Technol., 19, 340354, doi:10.1175/1520-0426-19.3.340.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, doi:10.1175/2010JAMC2363.1.

    • Search Google Scholar
    • Export Citation
  • Schlottke, J., W. Straub, K. D. Beheng, H. Gomaa, and B. Weigand, 2010: Numerical investigation of collision-induced breakup of raindrops. Part I: Methodology and dependencies on collision energy and eccentricity. J. Atmos. Sci., 67, 557575, doi:10.1175/2009JAS3174.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., A. P. Khain, U. Blahak, and K. D. Beheng, 2005: Possible effects of collisional breakup on mixed-phase deep convection simulated by a spectral (bin) cloud model. J. Atmos. Sci., 62, 19171931, doi:10.1175/JAS3432.1.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410415, doi:10.1175/1520-0469(1971)028<0410:SDORGB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42, 10041023, doi:10.1175/1520-0469(1985)042<1004:ASMOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521774, doi:10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, W., K. D. Beheng, A. Seifert, J. Schlottke, and B. Weigand, 2010: Numerical investigation of collision-induced breakup of raindrops. Part II: Parameterizations of coalescence efficiencies and fragment size distributions. J. Atmos. Sci., 67, 576588, doi:10.1175/2009JAS3175.1.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Almayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1989: The evolution of raindrop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 33123328, doi:10.1175/1520-0469(1989)046<3312:TEORSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Valdez, M. P., and K. C. Young, 1985: Number fluxes in equilibrium raindrop populations: A Markov chain analysis. J. Atmos. Sci., 42, 10241036, doi:10.1175/1520-0469(1985)042<1024:NFIERP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., N. P. M. van Lipzig, and L. Delobbe, 2011: The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium. Mon. Wea. Rev., 139, 11311147, doi:10.1175/2010MWR3481.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, P. C., 1969: Scattering by dielectric obstacles. Alta Freq.,38, 348–352.

  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian Oscillation. Bull. Amer. Meteor. Soc., 94, 1871–1891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Sun, and E. A. Brandes, 2006: Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci., 63, 12731290, doi:10.1175/JAS3680.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 608 334 19
PDF Downloads 559 320 15

The Impact of Raindrop Collisional Processes on the Polarimetric Radar Variables

Matthew R. KumjianAdvanced Study Program, National Center for Atmospheric Research,+ Boulder, Colorado

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
and
Olivier P. PratCooperative Institute for Climate and Satellites, North Carolina State University, and NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Olivier P. Prat in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of the collisional warm-rain microphysical processes on the polarimetric radar variables is quantified using a coupled microphysics–electromagnetic scattering model. A one-dimensional bin-microphysical rain shaft model that resolves explicitly the evolution of the drop size distribution (DSD) under the influence of collisional coalescence and breakup, drop settling, and aerodynamic breakup is coupled with electromagnetic scattering calculations that simulate vertical profiles of the polarimetric radar variables: reflectivity factor at horizontal polarization ZH, differential reflectivity ZDR, and specific differential phase KDP. The polarimetric radar fingerprint of each individual microphysical process is quantified as a function of the shape of the initial DSD and for different values of nominal rainfall rate. Results indicate that individual microphysical processes (collisional processes, evaporation) display a distinctive signature and evolve within specific areas of ZHZDR and ZDRKDP space. Furthermore, a comparison of the resulting simulated vertical profiles of the polarimetric variables with radar and disdrometer observations suggests that bin-microphysical parameterizations of drop breakup most frequently used are overly aggressive for the largest rainfall rates, resulting in very “tropical” DSDs heavily skewed toward smaller drops.

Current affiliation: Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Matthew R. Kumjian, Department of Meteorology, The Pennsylvania State University, 513 Walker Building, University Park, PA 16802. E-mail: kumjian@psu.edu

Abstract

The impact of the collisional warm-rain microphysical processes on the polarimetric radar variables is quantified using a coupled microphysics–electromagnetic scattering model. A one-dimensional bin-microphysical rain shaft model that resolves explicitly the evolution of the drop size distribution (DSD) under the influence of collisional coalescence and breakup, drop settling, and aerodynamic breakup is coupled with electromagnetic scattering calculations that simulate vertical profiles of the polarimetric radar variables: reflectivity factor at horizontal polarization ZH, differential reflectivity ZDR, and specific differential phase KDP. The polarimetric radar fingerprint of each individual microphysical process is quantified as a function of the shape of the initial DSD and for different values of nominal rainfall rate. Results indicate that individual microphysical processes (collisional processes, evaporation) display a distinctive signature and evolve within specific areas of ZHZDR and ZDRKDP space. Furthermore, a comparison of the resulting simulated vertical profiles of the polarimetric variables with radar and disdrometer observations suggests that bin-microphysical parameterizations of drop breakup most frequently used are overly aggressive for the largest rainfall rates, resulting in very “tropical” DSDs heavily skewed toward smaller drops.

Current affiliation: Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Matthew R. Kumjian, Department of Meteorology, The Pennsylvania State University, 513 Walker Building, University Park, PA 16802. E-mail: kumjian@psu.edu
Save