• Barsugli, J., S.-I. Shin, and P. D. Sardeshmukh, 2005: Tropical climate regimes and global climate sensitivity in a simple setting. J. Atmos. Sci., 62, 12261240, doi:10.1175/JAS3404.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 5, 316337, doi:10.1002/jame.20019.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, doi:10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2011: Atmospheric and surface contributions to planetary albedo. J. Climate, 24, 44024418, doi:10.1175/2011JCLI3946.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology.International Geophysics Series, Vol. 56, Academic Press, 409 pp.

  • Iacono, M J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and E. K. Schneider, 2000: A spontaneously generated tropical atmospheric general circulation. J. Atmos. Sci., 57, 20802093, doi:10.1175/1520-0469(2000)057<2080:ASGTAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, doi:10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, doi:10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and I. M. Held, 2012: Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 25512565, doi:10.1175/JAS-D-11-0257.1.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806, doi:10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2010: Principles of Planetary Climate.Cambridge University Press, 652 pp.

  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximation technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, doi:10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Popke, D., B. Stevens, and A. Voigt, 2013: Climate and climate change in a radiative–convective equilibrium version of ECHAM6. J. Adv. Model. Earth Syst., 5, 114, doi:10.1029/2012MS000191.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1976: Radiative transfer within the earth’s troposphere and stratosphere: A simplified radiative–convective model. J. Atmos. Sci., 33, 13301346, doi:10.1175/1520-0469(1976)033<1330:RTWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and J. A. Coakley Jr., 1978: Climate modeling through radiative-convective models. Rev. Geophys., 16, 465489, doi:10.1029/RG016i004p00465.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2011: Response of tropical precipitation to global warming. J. Atmos. Sci., 68, 123138, doi:10.1175/2010JAS3542.1.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., 2009: Radiative constraints on the hydrological cycle in an idealized radiative–convective equilibrium model. J. Atmos. Sci., 66, 7791, doi:10.1175/2008JAS2797.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1998: Radiative–convective equilibrium in a three-dimensional cloud-ensemble model. Quart. J. Roy. Meteor. Soc., 124, 20732097, doi:10.1002/qj.49712455013.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Sys., 6, 5974, doi:10.1002/2013MS000269.

    • Search Google Scholar
    • Export Citation
  • Wordsworth, R. D., F. Forget, F. Selsis, J. Madeleine, E. Millour, and V. Eymet, 2010: Is Gliese 581d habitable? Some constraints from radiative–convective climate modeling. Astron. Astrophys., 522, A22, doi:10.1051/0004-6361/201015053.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Q. B. Li, Y. Gu, K. N. Liou, and B. Meland, 2013: Dust vertical profile impact on global radiative forcing estimation using a coupled chemical-transport–radiative-transfer model. Atmos. Chem. Phys., 13, 70977114, doi:10.5194/acp-13-7097-2013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1196 380 39
PDF Downloads 808 287 28

On the Choice of Average Solar Zenith Angle

Timothy W. CroninProgram in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Timothy W. Cronin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Idealized climate modeling studies often choose to neglect spatiotemporal variations in solar radiation, but doing so comes with an important decision about how to average solar radiation in space and time. Since both clear-sky and cloud albedo are increasing functions of the solar zenith angle, one can choose an absorption-weighted zenith angle that reproduces the spatial- or time-mean absorbed solar radiation. Calculations are performed for a pure scattering atmosphere and with a more detailed radiative transfer model and show that the absorption-weighted zenith angle is usually between the daytime-weighted and insolation-weighted zenith angles but much closer to the insolation-weighted zenith angle in most cases, especially if clouds are responsible for much of the shortwave reflection. Use of daytime-average zenith angle may lead to a high bias in planetary albedo of approximately 3%, equivalent to a deficit in shortwave absorption of approximately 10 W m−2 in the global energy budget (comparable to the radiative forcing of a roughly sixfold change in CO2 concentration). Other studies that have used general circulation models with spatially constant insolation have underestimated the global-mean zenith angle, with a consequent low bias in planetary albedo of approximately 2%–6% or a surplus in shortwave absorption of approximately 7–20 W m−2 in the global energy budget.

Corresponding author address: Timothy W. Cronin, MIT, 77 Massachusetts Ave., Cambridge, MA 02139. E-mail: twcronin@mit.edu

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-16-0185.1 and http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-16-0335.1

Abstract

Idealized climate modeling studies often choose to neglect spatiotemporal variations in solar radiation, but doing so comes with an important decision about how to average solar radiation in space and time. Since both clear-sky and cloud albedo are increasing functions of the solar zenith angle, one can choose an absorption-weighted zenith angle that reproduces the spatial- or time-mean absorbed solar radiation. Calculations are performed for a pure scattering atmosphere and with a more detailed radiative transfer model and show that the absorption-weighted zenith angle is usually between the daytime-weighted and insolation-weighted zenith angles but much closer to the insolation-weighted zenith angle in most cases, especially if clouds are responsible for much of the shortwave reflection. Use of daytime-average zenith angle may lead to a high bias in planetary albedo of approximately 3%, equivalent to a deficit in shortwave absorption of approximately 10 W m−2 in the global energy budget (comparable to the radiative forcing of a roughly sixfold change in CO2 concentration). Other studies that have used general circulation models with spatially constant insolation have underestimated the global-mean zenith angle, with a consequent low bias in planetary albedo of approximately 2%–6% or a surplus in shortwave absorption of approximately 7–20 W m−2 in the global energy budget.

Corresponding author address: Timothy W. Cronin, MIT, 77 Massachusetts Ave., Cambridge, MA 02139. E-mail: twcronin@mit.edu

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-16-0185.1 and http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-16-0335.1

Save