• Bartlett, J. T., and P. R. Jonas, 1972: On the dispersion of the sizes of droplets growing by condensation in turbulent clouds. Quart. J. Roy. Meteor. Soc., 98, 150164, doi:10.1002/qj.49709841512.

    • Search Google Scholar
    • Export Citation
  • Benkert, C., M. O. Scully, A. A. Rangwala, and W. Schleich, 1990: Quantum-noise suppression in lasers via memory-correlation effects. Phys. Rev., 42A, 15031514, doi:10.1103/PhysRevA.42.1503.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and L. Chaumat, 2001: Droplet spectra broadening in cumulus clouds. Part I. Broadening in adiabatic cores. J. Atmos. Sci., 58, 628641, doi:10.1175/1520-0469(2001)058<0628:DSBICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burkhardt, U., and B. Kärcher, 2011: Global radiative forcing from contrail cirrus. Nat. Climate Change, 1, 5458, doi:10.1038/nclimate1068.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and M. Satoh, 2009: Simulating global clouds: Past, present, and future. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., Strungmann Forum Reports, Vol. 2, MIT Press, 469–486.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. P. Ackerman, and D. D. Turner, 2004: Evidence of high ice supersaturation in cirrus clouds using ARM Raman lidar measurements. Geophys. Res. Lett.,31, L11106, doi:10.1029/2004GL019705.

  • Cooper, W. A., 1989: Effects of variable growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, doi:10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, S., and Coauthors, 2010: In situ and lidar observations of tropopause subvisible cirrus clouds during TC4. J. Geophys. Res.,115, D00J17, doi:10.1029/2009JD013093.

  • Dinh, T. P., D. R. Durran, and T. P. Ackerman, 2010: Maintenance of tropical tropopause layer cirrus. J. Geophys. Res.,115, D02104, doi:10.1029/2009JD012735.

  • Durran, D. R., T. Dinh, M. Ammerman, and T. Ackerman, 2009: The mesoscale dynamics of thin tropical tropopause cirrus. J. Atmos. Sci., 66, 28592873, doi:10.1175/2009JAS3046.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, 2012: Life cycle of midlatitude deep convective systems in a Lagrangian framework. J. Geophys. Res.,117, D23201, doi:10.1029/2012JD018362.

  • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544560, doi:10.1175/1520-0469(2003)060<0544:AASOIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, L., C. Kiemle, and G. C. Craig, 2012: Height-resolved variability of midlatitude tropospheric water vapor measured by an airborne lidar. Geophys. Res. Lett.,39, L06803, doi:10.1029/2011GL050621.

  • Fritts, D. C., L. Wang, and J. A. Werne, 2013: Gravity wave–fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. J. Atmos. Sci., 70, 37103734, doi:10.1175/JAS-D-13-055.1.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., M. Bonazzola, P. H. Haynes, and T. Peter, 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res.,110, D08107, doi:10.1029/2004JD005516.

  • Hänggi, P., and P. Jung, 1995: Colored noise in dynamical systems. Advances in Chemical Physics, Vol. 89, I. Prigogine and S. A. Rice, Eds., John Wiley & Sons, 239–326.

  • Heymsfield, A. J., 2003: Properties of tropical and midlatitude ice cloud particle ensembles. Part I: Median mass diameters and terminal velocities. J. Atmos. Sci., 60, 25732591, doi:10.1175/1520-0469(2003)060<2573:POTAMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and A. Gettelman, 2001: Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett., 28, 27992802, doi:10.1029/2001GL013148.

    • Search Google Scholar
    • Export Citation
  • Hoyle, C. R., B. P. Luo, and T. Peter, 2005: The origin of high ice crystal number densities in cirrus clouds. J. Atmos. Sci., 62, 25682579, doi:10.1175/JAS3487.1.

    • Search Google Scholar
    • Export Citation
  • Ivanova, K., and T. P. Ackerman, 2009: Tracking nucleation, growth, and sublimation in cirrus clouds using ARM millimeter-wavelength radar observations. J. Geophys. Res.,114, D06113, doi:10.1029/2008JD010271.

  • Jeffery, C. A., J. M. Reisner, and M. Andrejczuk, 2007: Another look at stochastic condensation for subgrid cloud modeling: Adiabatic evolution and effects. J. Atmos. Sci., 64, 39493968, doi:10.1175/2006JAS2147.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., O. B. Toon, D. L. Westphal, S. Kinne, and A. J. Heymsfield, 1994: Microphysical modeling of cirrus: 1. Comparison with 1986 FIRE IFO measurements. J. Geophys. Res., 99, 10 42110 442, doi:10.1029/93JD02334.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. R. Schoeberl, 1996: On the formation and persistence of subvisible cirrus clouds near the tropical tropopause. J. Geophys. Res., 101, 21 36121 375, doi:10.1029/95JD03575.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2008: Formation of large (≃100μm) ice crystals near the tropical tropopause. Atmos. Chem. Phys., 8, 16211633, doi:10.5194/acp-8-1621-2008.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., L. Pfister, and O. B. Toon, 2011: Impact of radiative heating, wind shear, temperature variability, and microphysical processes on the structure and evolution of thin cirrus in the tropical tropopause layer. J. Geophys. Res.,116, D12209, doi:10.1029/2010JD015417.

  • Jensen, E. J., and Coauthors, 2013: Ice nucleation and dehydration in the tropical tropopause layer. Proc. Natl. Acad. Sci. USA, 110, 20412046, doi:10.1073/pnas.1217104110.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., A. Gettelman, E. J. Fetzer, A. Eldering, and C. K. Liang, 2009: Cloudy and clear-sky relative humidity in the upper troposphere observed by the A-train. J. Geophys. Res.,114, D00H02, doi:10.1029/2009JD011738.

  • Kärcher, B., 2012: Supersaturation fluctuations in cirrus clouds driven by colored noise. J. Atmos. Sci., 69, 435443, doi:10.1175/JAS-D-11-0151.1.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and J. Ström, 2003: The roles of dynamical variability and aerosols in cirrus cloud formation. Atmos. Chem. Phys., 3, 823838, doi:10.5194/acp-3-823-2003.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and U. Burkhardt, 2008: A cirrus cloud scheme for general circulation models. Quart. J. Roy. Meteor. Soc., 134, 14391461, doi:10.1002/qj.301.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. Baker, and D. Hegg, 2006: Microphysical and dynamical controls on cirrus cloud optical depth distributions. J. Geophys. Res.,111, D24205, doi:10.1029/2005JD006916.

  • Khvorostyanov, V. I., and K. Sassen, 1998: Cirrus cloud simulation using explicit microphysics and radiation. Part I: Model description. J. Atmos. Sci., 55, 18081821, doi:10.1175/1520-0469(1998)055<1808:CCSUEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 1999: Toward the theory of stochastic condensation in clouds. Part I: A general kinetic equation. J. Atmos. Sci., 56, 39853996, doi:10.1175/1520-0469(1999)056<3985:TTTOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 1995: The influence of supersaturation fluctuations on droplet size spectra formation. J. Atmos. Sci., 52, 36203634, doi:10.1175/1520-0469(1995)052<3620:TIOSFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, doi:10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuhs, W. F., C. Sippel, A. Falenty, and T. C. Hansen, 2012: Extent and relevance of stacking disorder in “ice Ic.” Proc. Natl. Acad. Sci. USA, 109, 21 25921 264, doi:10.1073/pnas.1210331110.

    • Search Google Scholar
    • Export Citation
  • Lamquin, N., C. J. Stubenrauch, K. Gierens, U. Burkhardt, and H. Smit, 2012: A global climatology of upper-tropospheric ice supersaturation occurrence inferred from the Atmospheric Infrared Sounder calibrated by MOZAIC. Atmos. Chem. Phys., 12, 381405, doi:10.5194/acp-12-381-2012.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. Pilson, B. Baker, Q. Mo, E. Jensen, L. Pfister, and P. Bui, 2008: Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer. Atmos. Chem. Phys., 8, 16091620, doi:10.5194/acp-8-1609-2008.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., E. Jensen, D. L. Mitchell, B. Baker, Q. Mo, and B. Pilson, 2010: Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J. Geophys. Res.,115, D00J08, doi:10.1029/2009JD013017.

  • Levin, L. M., and Y. S. Sedunov, 1966: Stochastic condensation of drops and kinetics of cloud spectrum formation. J. Rech. Atmos., 2, 425432.

    • Search Google Scholar
    • Export Citation
  • Lin, H., K. J. Noone, J. Ström, and A. J. Heymsfield, 1998: Dynamical influences on cirrus cloud formation process. J. Atmos. Sci., 55, 19401949, doi:10.1175/1520-0469(1998)055<1940:DIOCCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. S., S. Fueglistaler, and P. H. Haynes, 2010: Advection-condensation paradigm for stratospheric water vapor. J. Geophys. Res.,115, D24307, doi:10.1029/2010JD014352.

  • Lohmann, U., and S. E. Schwartz, 2009: Aerosols and clouds in chemical transport models and climate models. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., Strungmann Forum Reports, Vol. 2, MIT Press, 531–555.

    • Search Google Scholar
    • Export Citation
  • Luo, B. P., and Coauthors, 2003: Ultrathin tropical tropopause clouds (UTTCs): II. Stabilization mechanisms. Atmos. Chem. Phys., 3, 10931100, doi:10.5194/acp-3-1093-2003.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17, 45414563, doi:10.1175/3222.1.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., E. E. Clothiaux, and T. P. Ackerman, 2001: The composite characteristic of cirrus clouds: Bulk properties revealed by one year of continuous cloud radar data. J. Climate, 14, 21852203, doi:10.1175/1520-0442(2001)014<2185:TCCOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manton, M. J., 1979: On the broadening of a droplet distribution by turbulence near cloud base. Quart. J. Roy. Meteor. Soc., 105, 899914, doi:10.1002/qj.49710544613.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., and A. J. Heymsfield, 1997: A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis. J. Atmos. Oceanic Technol., 14, 753768, doi:10.1175/1520-0426(1997)014<0753:ABBCCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda, 1998: Transformation of contrails into cirrus during SUCCESS. Geophys. Res. Lett., 25, 11571160, doi:10.1029/97GL03314.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., 2003: Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice. Geophys. Res. Lett.,30, 2230, doi:10.1029/2003GL018566.

  • Peter, T., and Coauthors, 2003: Ultrathin tropical tropopause clouds (UTTCs): I. Cloud morphology and occurrence. Atmos. Chem. Phys., 3, 10831091, doi:10.5194/acp-3-1083-2003.

    • Search Google Scholar
    • Export Citation
  • Peter, T., C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop, 2006: When dry air is too humid. Science, 314, 13991402, doi:10.1126/science.1135199.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation.Kluwer Academic, 954 pp.

  • Prusa, J. M., P. K. Smolarkiewicz, and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Comput. Fluids, 37, 11931207, doi:10.1016/j.compfluid.2007.12.001.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, doi:10.1038/ngeo1733.

    • Search Google Scholar
    • Export Citation
  • Risken, H., 1996: The Fokker-Planck Equation: Methods of Solution and Applications.Springer, 472 pp.

  • Sassen, K., D. O’C. Starr, and T. Uttal, 1989: Mesoscale and microscale structure of cirrus clouds: Three case studies. J. Atmos. Sci., 46, 371396, doi:10.1175/1520-0469(1989)046<0371:MAMSOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 2006: Multidimensional positive definite advection transport algorithm: An overview. Int. J. Numer. Methods Fluids, 50, 11231144, doi:10.1002/fld.1071.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and L. G. Margolin, 1998: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys., 140, 459480, doi:10.1006/jcph.1998.5901.

    • Search Google Scholar
    • Export Citation
  • Sölch, I., and B. Kärcher, 2010: A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Quart. J. Roy. Meteor. Soc., 136, 20742093, doi:10.1002/qj.689.

    • Search Google Scholar
    • Export Citation
  • Sölch, I., and B. Kärcher, 2011: Process-oriented large-eddy simulations of a midlatitude cirrus cloud system based on observations. Quart. J. Roy. Meteor. Soc., 137, 374393, doi:10.1002/qj.764.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S.-C. Tsay, P. W. Stackhouse, and P. J. Flatau, 1990: The relevance of microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 17421753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ström, J., B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, and P. Wendling, 1997: In situ observations of the microphysical properties of young cirrus clouds. J. Atmos. Sci., 54, 25422553, doi:10.1175/1520-0469(1997)054<2542:ISOOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, Q. Fu, and T. P. Ackerman, 2010: Tropical tropopause transition layer cirrus as represented by CALIPSO lidar observations. J. Atmos. Sci., 67, 31133129, doi:10.1175/2010JAS3412.1.

    • Search Google Scholar
    • Export Citation
  • Voigt, C., and Coauthors, 2011: Extinction and optical depth of contrails. Geophys. Res. Lett.,38, L11806, doi:10.1029/2011GL047189.

  • Wang, T., and A. E. Dessler, 2012: Analysis of cirrus in the tropical tropopause layer from CALIPSO and MLS data: A water perspective. J. Geophys. Res.,117, D04211, doi:10.1029/2011JD016442.

  • Winker, D. M., and C. R. Trepte, 1998: Laminar cirrus observed near the tropical tropopause by LITE. Geophys. Res. Lett., 25, 33513354, doi:10.1029/98GL01292.

    • Search Google Scholar
    • Export Citation
  • Wood, S. E., M. B. Baker, and D. Calhoun, 2001: New model for the vapor growth of hexagonal ice crystals in the atmosphere. J. Geophys. Res., 106, 48454870, doi:10.1029/2000JD900338.

    • Search Google Scholar
    • Export Citation
  • Yang, H., S. Dobbie, G. G. Mace, A. Ross, and M. Quante, 2012: GEWEX Cloud System Study (GCSS) cirrus cloud working group: Development of an observation-based case study for model evaluation. Geosci. Model Dev., 5, 829843, doi:10.5194/gmd-5-829-2012.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Y. Harrington, 2014: Including surface kinetic effects in simple models of ice vapor diffusion. J. Atmos. Sci., 71, 372390, doi:10.1175/JAS-D-13-0103.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 102 10
PDF Downloads 164 72 11

Supersaturation Variability and Cirrus Ice Crystal Size Distributions

B. KärcherInstitut für Physik der Atmosphäre, DLR Oberpfaffenhofen, Wessling, Germany

Search for other papers by B. Kärcher in
Current site
Google Scholar
PubMed
Close
,
A. DörnbrackInstitut für Physik der Atmosphäre, DLR Oberpfaffenhofen, Wessling, Germany

Search for other papers by A. Dörnbrack in
Current site
Google Scholar
PubMed
Close
, and
I. SölchInstitut für Physik der Atmosphäre, DLR Oberpfaffenhofen, Wessling, Germany

Search for other papers by I. Sölch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Small-scale dynamical variability affects atmospheric supersaturation and therefore the development of ice clouds via uptake of water vapor on ice crystals. This variability and its implications for ice growth are difficult to capture experimentally and theoretically. By interpreting supersaturation as a stochastic variable, the authors examine the average temporal behavior of, and the link between, supersaturation fluctuations and ice crystal size distributions in upper-tropospheric cirrus clouds. The authors classify cirrus types according to their ability to dampen supersaturation fluctuations owing to depositional growth of cloud ice and study how size distributions in them respond to supersaturation variability, investigating the possibility of the occurrence of ice-supersaturated states within cirrus. Typical time scales for growth and damping impacts on supersaturation are minutes and minutes to hours, respectively, and are highly variable among cirrus types and within single clouds. Transient deviations from saturated equilibrium states can occur depending on the ice crystal number concentration and size and on the strength of the small-scale dynamical forcing. Supersaturation preferentially occurs in cloud regions with few small ice crystals. The authors demonstrate that supersaturation fluctuations in very thin tropical tropopause cirrus create long-lived supersaturated states. Furthermore, they potentially generate few large ice crystals, broadening size distributions, and significantly enhance water mass fluxes due to sedimentation. Although not studied here, they may also allow new ice crystals to nucleate. Implications of these findings for those clouds to dehydrate air entering the lower stratosphere are discussed and future research needs are outlined.

Corresponding author address: Bernd Kärcher, Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, Germany. E-mail: bernd.kaercher@dlr.de

Abstract

Small-scale dynamical variability affects atmospheric supersaturation and therefore the development of ice clouds via uptake of water vapor on ice crystals. This variability and its implications for ice growth are difficult to capture experimentally and theoretically. By interpreting supersaturation as a stochastic variable, the authors examine the average temporal behavior of, and the link between, supersaturation fluctuations and ice crystal size distributions in upper-tropospheric cirrus clouds. The authors classify cirrus types according to their ability to dampen supersaturation fluctuations owing to depositional growth of cloud ice and study how size distributions in them respond to supersaturation variability, investigating the possibility of the occurrence of ice-supersaturated states within cirrus. Typical time scales for growth and damping impacts on supersaturation are minutes and minutes to hours, respectively, and are highly variable among cirrus types and within single clouds. Transient deviations from saturated equilibrium states can occur depending on the ice crystal number concentration and size and on the strength of the small-scale dynamical forcing. Supersaturation preferentially occurs in cloud regions with few small ice crystals. The authors demonstrate that supersaturation fluctuations in very thin tropical tropopause cirrus create long-lived supersaturated states. Furthermore, they potentially generate few large ice crystals, broadening size distributions, and significantly enhance water mass fluxes due to sedimentation. Although not studied here, they may also allow new ice crystals to nucleate. Implications of these findings for those clouds to dehydrate air entering the lower stratosphere are discussed and future research needs are outlined.

Corresponding author address: Bernd Kärcher, Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, Germany. E-mail: bernd.kaercher@dlr.de
Save