• Allen, D. R., L. Coy, S. D. Eckermann, J. P. McCormack, G. L. Manney, T. F. Hogan, and Y.-J. Kim, 2006: NOGAPS-ALPHA simulations of the 2002 Southern Hemisphere stratospheric major warming. Mon. Wea. Rev., 134, 498518, doi:10.1175/MWR3086.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, doi:10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere–troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 16611672, doi:10.1002/qj.479.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., T. Hirooka, A. O’Neill, S. Yoden, A. J. Charlton, Y. Hio, W. A. Lahoz, and A. Mori, 2003a: Major stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the ozone hole split. SPARC Newsletter, No. 20, SPARC Office, Verrières-le-Buisson, France, 2226.

  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003b: Stratospheric memory and extended-range weather forecasts. Science, 301, 636640, doi:10.1126/science.1087143.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I. Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and D. Jackson, 2012: SNAP: The Stratospheric Network for the Assessment of Predictability. SPARC Newsletter, No. 39, SPARC Office, Zurich, Switzerland, 4042.

  • Chen, P., and W. A. Robinson, 1992: Propagation of planetary waves between the troposphere and stratosphere. J. Atmos. Sci., 49, 25332545, doi:10.1175/1520-0469(1992)049<2533:POPWBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harada, Y., A. Goto, H. Hasegawa, N. Fujikawa, H. Naoe, and T. Hirooka, 2010: A major stratospheric sudden warming event in January 2009. J. Atmos. Sci., 67, 20522069, doi:10.1175/2009JAS3320.1.

    • Search Google Scholar
    • Export Citation
  • Hirooka, T., T. Ichimaru, and H. Mukougawa, 2007: Predictability of stratospheric sudden warmings as inferred from ensemble forecast data: Intercomparison of 2001/02 and 2003/04 winters. J. Meteor. Soc. Japan, 85, 919925, doi:10.2151/jmsj.85.919.

    • Search Google Scholar
    • Export Citation
  • Hirota, I., and Y. Sato, 1969: Periodic variation of the winter stratospheric circulation and intermittent vertical propagation of planetary waves. J. Meteor. Soc. Japan, 47, 390402.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., S. Yamada, and K. Tada, 1989: A parameterization scheme of orographic gravity wave drag with two different vertical partitionings. Part I: Impacts on medium-range forecasts. J. Meteor. Soc. Japan, 67, 1127.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and M. Flatau, 2010: Hindcasting the January 2009 Arctic sudden stratospheric warming and its influence on the Arctic Oscillation with unified parameterization of orographic drag in NOGAPS. Part I: Extended-range stand-alone forecast. Wea. Forecasting, 25, 16281644, doi:10.1175/2010WAF2222421.1.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K. G., and H. van Loon, 1999: The Stratosphere: Phenomena, History, and Relevance. Springer, 179 pp.

  • Lee, J. N., D. L. Wu, G. L. Manney, and M. J. Schwartz, 2009: Aura Microwave Limb Sounder observations of the northern annular mode: From the mesosphere to the upper troposphere. Geophys. Res. Lett., 36, L20807, doi:10.1029/2009GL040678.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: The life cycle of Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2005: Simulations of dynamics and transport during the September 2002 Antarctic major warming. J. Atmos. Sci., 62, 690707, doi:10.1175/JAS-3313.1.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2009: Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett., 36, L12815, doi:10.1029/2009GL038586.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and A. A. Scaife, 2010: Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution. J. Geophys. Res., 115, D16114, doi:10.1029/2009JD012643.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, doi:10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., and T. Hirooka, 2004: Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon. Wea. Rev., 132, 17641776, doi:10.1175/1520-0493(2004)132<1764:POSSWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., H. Sakai, and T. Hirooka, 2005: High sensitivity to the initial condition for the prediction of stratospheric sudden warming. Geophys. Res. Lett., 32, L17806, doi:10.1029/2005GL022909.

    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., T. Hirooka, and Y. Kuroda, 2009: Influence of stratospheric circulation on the predictability of the tropospheric northern annular mode. Geophys. Res. Lett., 36, L08814, doi:10.1029/2008GL037127.

    • Search Google Scholar
    • Export Citation
  • Nakagawa, K. I., and K. Yamazaki, 2006: What kind of stratospheric sudden warming propagates to the troposphere? Geophys. Res. Lett., 33, L04801, doi:10.1029/2005GL024784.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., and H. Nakamura, 2004: Tropospheric influence on the diminished Antarctic ozone hole in September 2002. Geophys. Res. Lett., 31, L16103, doi:10.1029/2004GL019532.

    • Search Google Scholar
    • Export Citation
  • O’Neill, A., 2003: Stratospheric sudden warmings. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Curry, and J. A. Pyle, Eds., Vol. 4, Academic Press, 1342–1353.

  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, doi:10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shiotani, M., 1986: Planetary wave activity in the troposphere and stratosphere during the Northern Hemisphere winter. J. Atmos. Sci., 43, 32003209, doi:10.1175/1520-0469(1986)043<3200:PWAITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. F. Scinocca, 2010: The influence of basic state on the Northern Hemisphere circulation response to climate change. J. Climate, 23, 14341446, doi:10.1175/2009JCLI3167.1.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, doi:10.1038/ngeo1698.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., M. Hortal, G. Kelly, A. McNally, A. Untch, and S. Uppala, 2005: ECMWF analyses and forecasts of stratospheric winter polar vortex breakup: September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci., 62, 668689, doi:10.1175/JAS-3322.1.

    • Search Google Scholar
    • Export Citation
  • Stan, C., and D. M. Straus, 2009: Stratospheric predictability and sudden stratospheric warming events. J. Geophys. Res., 114, D12103, doi:10.1029/2008JD011277.

    • Search Google Scholar
    • Export Citation
  • Sun, L., W. A. Robinson, and G. Chen, 2012: The predictability of stratospheric warming events: More from the troposphere or the stratosphere? J. Atmos. Sci., 69, 768783, doi:10.1175/JAS-D-11-0144.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2014: Stratospheric predictability: Basic characteristics in JMA 1-month hindcast experiments for 1979–2009. J. Atmos. Sci., doi:10.1175/JAS-D-13-0295.1, in press.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, doi:10.1034/j.1600-0870.1990.t01-2-00003.x.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Charlton-Perez, S. Ineson, A. G. Marshall, and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 115, D06108, doi:10.1029/2009JD012742.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., T. Yamaga, S. Pawson, and U. Langematz, 1999: A composite analysis of the stratospheric sudden warmings simulated in a perpetual January integration of the Berlin TSM GCM. J. Meteor. Soc. Japan, 77, 431445.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 52 3
PDF Downloads 43 8 0

Predictability of Major Stratospheric Sudden Warmings of the Vortex Split Type: Case Study of the 2002 Southern Event and the 2009 and 1989 Northern Events

Masakazu TaguchiDepartment of Earth Science, Aichi University of Education, Kariya, Japan

Search for other papers by Masakazu Taguchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the predictability of three major stratospheric sudden warmings (MSSWs) of the vortex split type: the Southern Hemisphere case in September 2002 and two Northern Hemisphere cases in January 2009 and February 1989. The author examines changes in the predictability of the MSSWs with lead time, as well as the connection of the predictability to lower-atmospheric features for pre- and post-MSSW periods. The Japan Meteorological Agency (JMA)’s 1-month ensemble hindcast (HC) experiment data are compared to the Japanese 25-year Reanalysis Project (JRA-25)/JMA Climate Data Assimilation System (JCDAS) data.

For the pre-MSSW period, a strong predictability connection is observed among all three cases. Unsuccessful predictions of the MSSWs are characterized by an underestimation (or lack) of the enhanced wave activity in the lower stratosphere, which is further related to the strength and persistence of the upper-tropospheric ridge and trough. The mean zonal wind profile in the upper troposphere is also important for the 2009 case. These results confirm the role of tropospheric wave forcing of the MSSWs in the context of predictability. The characteristic time scale for successful predictions is approximately 10 days–2 weeks, which roughly corresponds to the time scale of the tropospheric wave forcing. No ensemble member successfully predicts the MSSWs with lead times longer than the time scale.

The predictability connection between the stratospheric and tropospheric anomalies is more subtle for the post-MSSW period. In particular, the HC group initialized about 1 week before the MSSWs tends to reproduce the evolution of the stratosphere after the MSSWs well but not that of the troposphere in some cases.

Corresponding author address: Masakazu Taguchi, Department of Earth Science, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya 448-8542, Japan. E-mail: mtaguchi@auecc.aichi-edu.ac.jp

Abstract

This study investigates the predictability of three major stratospheric sudden warmings (MSSWs) of the vortex split type: the Southern Hemisphere case in September 2002 and two Northern Hemisphere cases in January 2009 and February 1989. The author examines changes in the predictability of the MSSWs with lead time, as well as the connection of the predictability to lower-atmospheric features for pre- and post-MSSW periods. The Japan Meteorological Agency (JMA)’s 1-month ensemble hindcast (HC) experiment data are compared to the Japanese 25-year Reanalysis Project (JRA-25)/JMA Climate Data Assimilation System (JCDAS) data.

For the pre-MSSW period, a strong predictability connection is observed among all three cases. Unsuccessful predictions of the MSSWs are characterized by an underestimation (or lack) of the enhanced wave activity in the lower stratosphere, which is further related to the strength and persistence of the upper-tropospheric ridge and trough. The mean zonal wind profile in the upper troposphere is also important for the 2009 case. These results confirm the role of tropospheric wave forcing of the MSSWs in the context of predictability. The characteristic time scale for successful predictions is approximately 10 days–2 weeks, which roughly corresponds to the time scale of the tropospheric wave forcing. No ensemble member successfully predicts the MSSWs with lead times longer than the time scale.

The predictability connection between the stratospheric and tropospheric anomalies is more subtle for the post-MSSW period. In particular, the HC group initialized about 1 week before the MSSWs tends to reproduce the evolution of the stratosphere after the MSSWs well but not that of the troposphere in some cases.

Corresponding author address: Masakazu Taguchi, Department of Earth Science, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya 448-8542, Japan. E-mail: mtaguchi@auecc.aichi-edu.ac.jp
Save