Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests

Hugh Morrison National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
and
Jason A. Milbrandt Atmospheric Numerical Prediction Research, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Jason A. Milbrandt in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A method for the parameterization of ice-phase microphysics is proposed and used to develop a new bulk microphysics scheme. All ice-phase particles are represented by several physical properties that evolve freely in time and space. The scheme prognoses four ice mixing ratio variables, total mass, rime mass, rime volume, and number, allowing 4 degrees of freedom for representing the particle properties using a single category. This approach represents a significant departure from traditional microphysics schemes in which ice-phase hydrometeors are partitioned into various predefined categories (e.g., cloud ice, snow, and graupel) with prescribed characteristics. The liquid-phase component of the new scheme uses a standard two-moment, two-category approach.

The proposed method and a complete description of the new predicted particle properties (P3) scheme are provided. Results from idealized model simulations of a two-dimensional squall line are presented that illustrate overall behavior of the scheme. Despite its use of a single ice-phase category, the scheme simulates a realistically wide range of particle characteristics in different regions of the squall line, consistent with observed ice particles in real squall lines. Sensitivity tests show that both the prediction of the rime mass fraction and the rime density are important for the simulation of the squall-line structure and precipitation.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Hugh Morrison, National Center for Atmospheric Research, 3090 Center Green Drive, Boulder, CO 80301. E-mail: morrison@ucar.edu

Abstract

A method for the parameterization of ice-phase microphysics is proposed and used to develop a new bulk microphysics scheme. All ice-phase particles are represented by several physical properties that evolve freely in time and space. The scheme prognoses four ice mixing ratio variables, total mass, rime mass, rime volume, and number, allowing 4 degrees of freedom for representing the particle properties using a single category. This approach represents a significant departure from traditional microphysics schemes in which ice-phase hydrometeors are partitioned into various predefined categories (e.g., cloud ice, snow, and graupel) with prescribed characteristics. The liquid-phase component of the new scheme uses a standard two-moment, two-category approach.

The proposed method and a complete description of the new predicted particle properties (P3) scheme are provided. Results from idealized model simulations of a two-dimensional squall line are presented that illustrate overall behavior of the scheme. Despite its use of a single ice-phase category, the scheme simulates a realistically wide range of particle characteristics in different regions of the squall line, consistent with observed ice particles in real squall lines. Sensitivity tests show that both the prediction of the rime mass fraction and the rime density are important for the simulation of the squall-line structure and precipitation.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Hugh Morrison, National Center for Atmospheric Research, 3090 Center Green Drive, Boulder, CO 80301. E-mail: morrison@ucar.edu
Save
  • Adams-Selin, R. D., S. C. van den Heever, and R. H. Johnson, 2013: Impacts of graupel parameterization schemes on idealized bow echo simulations. Mon. Wea. Rev., 141, 3735–3756, doi:10.1175/MWR-D-12-00343.1.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2009: Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde. J. Geophys. Res., 114, D17208, doi:10.1029/2008JD011659.

    • Search Google Scholar
    • Export Citation
  • Barklie, R. H. D., and N. R. Gokhale, 1959: The freezing of supercooled water drops. Alberta hail, 1958, and related studies, McGill University Stormy Weather Group Sci. Rep. MW-30, Part III, 43–64.

  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851–864, doi:10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193–206, doi:10.1016/0169-8095(94)90020-5.

    • Search Google Scholar
    • Export Citation
  • Berry, E., and R. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 1825–1831, doi:10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc., 66B, 688–694, doi:10.1088/0370-1301/66/8/309.

  • Biggerstaff, M. I., and R. A. Houze, 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 3034–3065, doi:10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze, 1993: Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci., 50, 3091–3110, doi:10.1175/1520-0469(1993)050<3091:KAMOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze, 1994: The transition zone and secondary maximum of radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar data. J. Atmos. Sci., 51, 2733–2755, doi:10.1175/1520-0469(1994)051<2733:TTZASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total water probe. J. Atmos. Oceanic Technol., 12, 410–414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202–225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 2238–2255, doi:10.1175/2008JAMC1732.1.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., and R. List, 1993: Measurements of the heat and mass transfer parameters characterizing conical graupel growth. J. Atmos. Sci., 50, 1591–1609, doi:10.1175/1520-0469(1993)050<1591:MOTHAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815–1842, doi:10.1256/smsqj.56613.

    • Search Google Scholar
    • Export Citation
  • Cohen, C., and E. W. McCaul Jr., 2006: The sensitivity of simulated convective storms to variations in prescribed single-moment microphysics parameters that describe particle distributions, sizes, and numbers. Mon. Wea. Rev., 134, 2547–2565, doi:10.1175/MWR3195.1.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., M. F. Garvert, J. B. Wolfe, C. F. Mass, and C. P. Woods, 2005: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62, 3535–3558, doi:10.1175/JAS3552.1.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., T. W. Choularton, M. W. Gallagher, K. N. Bower, M. J. Flynn, and J. A. Whiteway, 2006: Cloud-resolving simulations of intense tropical Hector thunderstorms: Implications for aerosol–cloud interactions. Quart. J. Roy. Meteor. Soc., 132, 3079–3106, doi:10.1256/qj.05.86.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.

  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multi-moment bulk microhysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 1152–1171, doi:10.1175/2009MWR2956.1.

    • Search Google Scholar
    • Export Citation
  • de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner, 2011: Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophys. Res. Lett., 38, L01803, doi:10.1029/2010GL046016.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, A. Bansemer, and C. H. Twohy, 2008: Determination of the combined ventilation factor and capacitance for ice crystal aggregates in airborne observations in a tropical anvil cloud. J. Atmos. Sci., 65, 376–391, doi:10.1175/2007JAS2391.1.

    • Search Google Scholar
    • Export Citation
  • Frick, C., A. Seifert, and H. Wernli, 2013: A bulk parameterization of melting snowflakes with explicit water fraction for the COSMO model. Geosci. Model Dev., 6, 1925–1939, doi:10.5194/gmd-6-1925-2013.

    • Search Google Scholar
    • Export Citation
  • Geresdi, I., 1998: Idealized simulation of the Colorado hailstorm case: Comparison of bulk and detailed microphysics. Atmos. Res., 45, 237–252, doi:10.1016/S0169-8095(97)00079-3.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610–2627, doi:10.1175/MWR2810.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006: Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative equilibrium. J. Climate, 19, 4664–4682, doi:10.1175/JCLI3857.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2008: Toward the mitigation of spurious cloud-edge supersaturation in cloud models. Mon. Wea. Rev., 136, 1224–1234, doi:10.1175/2007MWR2283.1.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243–244, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28, doi:10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349–364, doi:10.1175/JAS-D-12-040.1.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365–376, doi:10.1175/JAS-D-12-0152.1.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 2210–2237, doi:10.1175/JAS3963.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1982: A comparative study of the rates of development of potential graupel and hail embryos in High Plains storms. J. Atmos. Sci., 39, 2867–2897, doi:10.1175/1520-0469(1982)039<2867:ACSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2003: Properties of tropical and midlatitude ice cloud particle ensembles. Part II: Applications for mesoscale and climate models. J. Atmos. Sci., 60, 2592–2611, doi:10.1175/1520-0469(2003)060<2592:POTAMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, and C. H. Twohy, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64, 1047–1067, doi:10.1175/JAS3890.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., M. I. Biggerstaff, S. A. Rutledge, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608–619, doi:10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jarecka, D., W. W. Grabowski, H. Morrison, and H. Pawlowska, 2013: Homogeneity of the subgrid-scale turbulent mixing in large-eddy simulation of shallow convection. J. Atmos. Sci., 70, 2751–2767, doi:10.1175/JAS-D-13-042.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmosphere Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible application. J. Atmos. Sci., 61, 2963–2982, doi:10.1175/JAS-3350.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229–243, doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59, 1872–1884, doi:10.1175/1520-0469(2002)059<1872:TVODAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations. J. Appl. Meteor., 15, 747–762, doi:10.1175/1520-0450(1976)015<0747:IBCCEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and A. Belochitski, 2012: Parameterization of cloud microphysics based on full integral moments. J. Atmos. Sci., 69, 2229–2242, doi:10.1175/JAS-D-11-0268.1.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, and X. Zeng, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 2306–2320, doi:10.1175/JAS-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z., and J. H. Seinfeld, 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 5407–5429, doi:10.5194/acp-11-5407-2011.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 1013–1035, doi:10.1175/2010MWR3293.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., L. J. Donner, and B. A. Colle, 2011: Parameterization of riming intensity and its impact on ice fall speed using ARM data. Mon. Wea. Rev., 139, 1036–1047, doi:10.1175/2010MWR3299.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185–2197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171–194, doi:10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 1823–1842, doi:10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matson, R. J., and A. W. Huggins, 1980: The direct measurement of the sizes, shapes and kinematics of falling hailstones. J. Atmos. Sci., 37, 1107–1125, doi:10.1175/1520-0469(1980)037<1107:TDMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30, 985–1004, doi:10.1175/1520-0450-30.7.985.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., H. Zhang, G. Heymsfield, R. Hood, J. Dudhia, J. B. Halverson, and F. Marks Jr., 2006: Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63, 127–150, doi:10.1175/JAS3590.1.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics. Part II: The two-moment scheme. Atmos. Res., 45, 3–39, doi:10.1016/S0169-8095(97)00018-5.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064, doi:10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081, doi:10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and R. McTaggart-Cowan, 2010: Sedimentation-induced errors in bulk microphysics schemes. J. Atmos. Sci., 67, 3931–3948, doi:10.1175/2010JAS3541.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2013: Predicting graupel density in a bulk microphysics scheme. J. Atmos. Sci., 70, 410–429, doi:10.1175/JAS-D-12-0204.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 1710–1723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: The treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 1637–1644, doi:10.1175/JAS3413.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., E. Erfani, and S. Mishra, 2014: Developing and bounding ice particle mass- and area-dimension expressions for cirrus clouds. 14th Conf. on Cloud Physics, Boston, MA, Amer. Meteor. Soc., https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper250163.html.

  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29, 153–163, doi:10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2012: On the numerical treatment of hydrometeor sedimentation in bulk and hybrid bulk–bin schemes. Mon. Wea. Rev., 140, 1572–1588, doi:10.1175/MWR-D-11-00140.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 2839–2861, doi:10.1175/JAS3980.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008a: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 1528–1548, doi:10.1175/2007JAS2491.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008b: Modeling supersaturation and subgrid-scale mixing with two-moment warm bulk microphysics. J. Atmos. Sci., 65, 792–812, doi:10.1175/2007JAS2374.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2010: An improved representation of rimed snow and conversion to graupel in a mutlicomponent bin microphysics scheme. J. Atmos. Sci., 67, 1337–1360, doi:10.1175/2010JAS3250.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 1103–1130, doi:10.1175/2010MWR3433.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665–1677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312–339, doi:10.1175/JAS-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Musil, D. J., 1970: Computer modeling of hailstone growth in feeder clouds. J. Atmos. Sci., 27, 474–482, doi:10.1175/1520-0469(1970)027<0474:CMOHGI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Philips, V. T. J., L. J. Donner, and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64, 738–761, doi:10.1175/JAS3869.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation.Kluwer Academic Publishers, 954 pp.

  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius > 500 ÎĽm. J. Atmos. Sci., 41, 381–388, doi:10.1175/1520-0469(1984)041<0381:AWTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497–519, doi:10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107, doi:10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., 1974: The aggregation of natural ice crystals. Rep. AR110, 91 pp. [Available from University of Wyoming, Atmospheric Science, Dept. 3038, 1000 E. University Ave., Laramie, WY 82072.]

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972, doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and R. A. Houze, 1987: A diagnostic modelling study of the trailing stratiform region of a midlatitude squall line. J. Atmos. Sci., 44, 2640–2656, doi:10.1175/1520-0469(1987)044<2640:ADMSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: Dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 1605–1616, doi:10.1175/2009JAS3187.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2008: On the parameterization of evaporation of raindrops as simulated by a one-dimensional rainshaft model. J. Atmos. Sci., 65, 3608–3619, doi:10.1175/2008JAS2586.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265–281, doi:10.1016/S0169-8095(01)00126-0.

    • Search Google Scholar
    • Export Citation
  • Simmel, M., T. Trautmann, and G. Tetzlaff, 2002: Numerical solution of the stochastic collection equation comparison of the linear discrete method with other methods. Atmos. Res., 61, 135–148, doi:10.1016/S0169-8095(01)00131-4.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 1258–1260, doi:10.1175/1520-0450(1984)023<1258:ERRFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., R. L. Walko, and W. R. Cotton, 1996: The spurious production of cloud-edge supersaturation by Eulerian models. Mon. Wea. Rev., 124, 1034–1041, doi:10.1175/1520-0493(1996)124<1034:TSPOCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44, 445–466, doi:10.1175/JAM2211.1.

    • Search Google Scholar
    • Export Citation
  • Sulia, K., J. Y. Harrington, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part III: Applications and studies within a two-dimensional kinematic model. J. Atmos. Sci., 70, 3302–3320, doi:10.1175/JAS-D-12-0316.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1976: Hail in an axisymmetric cloud model. J. Atmos. Sci., 33, 1579–1601, doi:10.1175/1520-0469(1976)033<1579:HIAACM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., 2013: Impact of environmental instability on convective precipitation uncertainty associated with the nature of the rimed ice species in a bulk microphysics scheme. Mon. Wea. Rev., 141, 2841–2849, doi:10.1175/MWR-D-13-00036.1.

    • Search Google Scholar
    • Export Citation
  • Verlinde, H., and W. R. Cotton, 1993: Fitting microphysical observations of nonsteady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model. Mon. Wea. Rev., 121, 2776–2793, doi:10.1175/1520-0493(1993)121<2776:FMOONC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics. Part I: The one-moment scheme. Atmos. Res., 38, 29–62, doi:10.1016/0169-8095(94)00087-T.

    • Search Google Scholar
    • Export Citation
  • Wang, H., W. C. Skamarock, and G. Feingold, 2009: Evaluation of scalar advection schemes in the Advanced Research WRF model using large-eddy simulations of aerosol-cloud interactions. Mon. Wea. Rev., 137, 2547–2558, doi:10.1175/2009MWR2820.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., T. Auligne, and H. Morrison, 2012: Impact of microphysics scheme complexity on the propagation of initial perturbations. Mon. Wea. Rev., 140, 2287–2296, doi:10.1175/MWR-D-12-00005.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479–2498, doi:10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 3579–3594, doi:10.1175/JAS4028.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 1487–1509, doi:10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8106 2979 486
PDF Downloads 5504 1376 141