A Study of CINDY/DYNAMO MJO Suppressed Phase

Sue Chen * Naval Research Laboratory, Monterey, California

Search for other papers by Sue Chen in
Current site
Google Scholar
PubMed
Close
,
Maria Flatau * Naval Research Laboratory, Monterey, California

Search for other papers by Maria Flatau in
Current site
Google Scholar
PubMed
Close
,
Tommy G. Jensen Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Tommy G. Jensen in
Current site
Google Scholar
PubMed
Close
,
Toshiaki Shinoda Texas A&M University, Corpus Christi, Texas

Search for other papers by Toshiaki Shinoda in
Current site
Google Scholar
PubMed
Close
,
Jerome Schmidt * Naval Research Laboratory, Monterey, California

Search for other papers by Jerome Schmidt in
Current site
Google Scholar
PubMed
Close
,
Paul May Computer Sciences Corporation, Monterey, California

Search for other papers by Paul May in
Current site
Google Scholar
PubMed
Close
,
James Cummings Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by James Cummings in
Current site
Google Scholar
PubMed
Close
,
Ming Liu * Naval Research Laboratory, Monterey, California

Search for other papers by Ming Liu in
Current site
Google Scholar
PubMed
Close
,
Paul E. Ciesielski Colorado State University, Fort Collins, Colorado

Search for other papers by Paul E. Ciesielski in
Current site
Google Scholar
PubMed
Close
,
Christopher W. Fairall ** NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Christopher W. Fairall in
Current site
Google Scholar
PubMed
Close
,
Ren-Chieh Lien University of Washington, Seattle, Washington

Search for other papers by Ren-Chieh Lien in
Current site
Google Scholar
PubMed
Close
,
Dariusz B. Baranowski Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Search for other papers by Dariusz B. Baranowski in
Current site
Google Scholar
PubMed
Close
,
Nan-Hsun Chi University of Washington, Seattle, Washington

Search for other papers by Nan-Hsun Chi in
Current site
Google Scholar
PubMed
Close
,
Simon de Szoeke Oregon State University, Corvallis, Oregon

Search for other papers by Simon de Szoeke in
Current site
Google Scholar
PubMed
Close
, and
James Edson University of Connecticut, Groton, Connecticut

Search for other papers by James Edson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The diurnal variability and the environmental conditions that support the moisture resurgence of MJO events observed during the Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/DYNAMO campaign in October–December 2011 are investigated using in situ observations and the cloud-resolving fully air–ocean–wave Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). Spectral density and wavelet analysis of the total precipitable water (TPW) constructed from the DYNAMO soundings and TRMM satellite precipitation reveal a deep layer of vapor resurgence during the observed Wheeler and Hendon real-time multivariate MJO index phases 5–8 (MJO suppressed phase), which include diurnal, quasi-2-, quasi-3–4-, quasi-6–8-, and quasi-16-day oscillations. A similar oscillatory pattern is found in the DYNAMO moorings sea surface temperature analysis, suggesting a tightly coupled atmosphere and ocean system during these periods. COAMPS hindcast focused on the 12–16 November 2011 event suggests that both the diurnal sea surface temperature (SST) pumping and horizontal and vertical moisture transport associated with the westward propagating mixed Rossby–Gravity (MRG) waves play an essential role in the moisture resurgence during this period. Idealized COAMPS simulations of MRG waves are used to estimate the MRG and diurnal SST contributions to the overall moisture increase. These idealized MRG sensitivity experiments showed the TPW increase varies from 9% to 13% with the largest changes occurring in the simulations that included a diurnal SST variation of 2.5°C as observed.

Denotes Open Access content.

Corresponding author address: Sue Chen, Naval Research Laboratory, Marine Meteorology Division, 7 Grace Hopper Ave., Monterey, CA 93943. E-mail: sue.chen@nrlmry.navy.mil

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

The diurnal variability and the environmental conditions that support the moisture resurgence of MJO events observed during the Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/DYNAMO campaign in October–December 2011 are investigated using in situ observations and the cloud-resolving fully air–ocean–wave Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). Spectral density and wavelet analysis of the total precipitable water (TPW) constructed from the DYNAMO soundings and TRMM satellite precipitation reveal a deep layer of vapor resurgence during the observed Wheeler and Hendon real-time multivariate MJO index phases 5–8 (MJO suppressed phase), which include diurnal, quasi-2-, quasi-3–4-, quasi-6–8-, and quasi-16-day oscillations. A similar oscillatory pattern is found in the DYNAMO moorings sea surface temperature analysis, suggesting a tightly coupled atmosphere and ocean system during these periods. COAMPS hindcast focused on the 12–16 November 2011 event suggests that both the diurnal sea surface temperature (SST) pumping and horizontal and vertical moisture transport associated with the westward propagating mixed Rossby–Gravity (MRG) waves play an essential role in the moisture resurgence during this period. Idealized COAMPS simulations of MRG waves are used to estimate the MRG and diurnal SST contributions to the overall moisture increase. These idealized MRG sensitivity experiments showed the TPW increase varies from 9% to 13% with the largest changes occurring in the simulations that included a diurnal SST variation of 2.5°C as observed.

Denotes Open Access content.

Corresponding author address: Sue Chen, Naval Research Laboratory, Marine Meteorology Division, 7 Grace Hopper Ave., Monterey, CA 93943. E-mail: sue.chen@nrlmry.navy.mil

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Berkelhammer, M., C. Risi, N. Kurita, and D. C. Noone, 2012: The moisture source sequence for the Madden-Julian Oscillation as derived from satellite retrievals of HDO and H2O. J. Geophys. Res., 117, D03106, doi:10.1029/2011JD016803.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 29222939, doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2003: COAMPS version 3 model description. NRL Publ. NRL/PU/7500-03-448, 143 pp.

  • Chen, S., T. J. Campbell, H. Jin, S. Gaberšek, R. M. Hodur, and P. Martin, 2010: Effect of two-way air–sea coupling in high and low wind speed regimes. Mon. Wea. Rev., 138, 35793602, doi:10.1175/2009MWR3119.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., P. T. Haertel, R. H. Johnson, J. Wang, and S. M. Loehrer, 2012: Developing high-quality field program sounding datasets. Bull. Amer. Meteor. Soc., 93, 325–336, doi:10.1175/BAMS-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54, 23732386, doi:10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, doi:10.1038/ngeo1863.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 29092924, doi:10.1175/1520-0469(1990)047<2909:TIDOOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1991: The structure and annual variation of antisymmetric fluctuations of tropical convection and their association with Rossby–gravity waves. J. Atmos. Sci., 48, 21272140, doi:10.1175/1520-0469(1991)048<2127:TSAAVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 1979: An Introduction to Dynamic Meteorology. 2nd ed. Academic Press, 391 pp.

  • Hsu, H.-H., B. J. Hoskins, and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823839, doi:10.1175/1520-0469(1990)047<0823:TIOATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., T. J. Campbell, R. A. Allard, R. J. Small, and T. A. Smith, 2011: Turbulent heat fluxes during an intense cold-air outbreak over the Kuroshio Extension Region: Results from a high-resolution coupled atmosphere–ocean model. Ocean Dyn., 61, 657674, doi:10.1007/s10236-011-0380-0.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, doi:10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kurita, N., D. Noone, C. Risi, G. Schmidt, H. Yamada, and K. Yoneyama, 2011: Intraseasonal isotopic variation associated with the Madden-Julian Oscillation. J. Geophys. Res., 116, D24101, doi:10.1029/2010JD015209.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: The basic theory. J. Atmos. Sci., 44, 950972, doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., and D. E. Waliser, Eds., 2005: Intraseasonal Variability of the Atmosphere-Ocean Climate System. Springer, 474 pp.

  • Li, Y., and R. E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. J. Atmos. Sci., 69, 29832994, doi:10.1175/JAS-D-11-0245.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156179, doi:10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2.

  • Lynch, P., and X. Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, doi:10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, doi:10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, P. J., 2000: A description of the Navy Coastal Ocean model version 1.0. NRL Rep. NRL/FR/7322-00-9962, Naval Research Laboratory, Stennis Space Center, 42 pp. [Available online http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA387444.]

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 59165942, doi:10.1175/JCLI-D-11-00230.1.

    • Search Google Scholar
    • Export Citation
  • Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note 409, 40 pp.

  • Powell, S. W., and R. A. Houze, 2013: The cloud population and onset of the Madden-Julian Oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 979–11 995, doi:10.1002/2013JD020421.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 2009: Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci. Discuss., 6, 909–951, doi:10.5194/osd-6-909-2009.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and D. J. Torres, 1998: Fundamental moist modes of the equatorial troposphere. J. Atmos. Sci., 55, 17711790, doi:10.1175/1520-0469(1998)055<1771:FMMOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313042, doi:10.1175/2008JCLI2739.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359, doi:10.1175/2007JAS2345.1.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and K.-Y. Kim, 2003: Propagation and initiation mechanism of the Madden-Julian oscillation. J. Geophys. Res., 108, 4384, doi:10.1029/2002JD002876.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. Climate, 11, 16851702, doi:10.1175/1520-0442(1998)011<1685:IVOSFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., T. Jensen, M. Flatau, and S. Chen, 2013: Surface wind and upper-ocean variability associated with the Madden–Julian oscillation simulated by the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 141, 22902307, doi:10.1175/MWR-D-12-00273.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., T. Campbell, J. Teixeira, S. Carniel, T. A. Smith, J. Dykes, S. Chen, and R. Allard, 2011: Air–sea interaction in the Ligurian Sea: Assessment of a coupled ocean–atmosphere model using in situ data from LASIE07. Mon. Wea. Rev., 139, 17851808, doi:10.1175/2010MWR3431.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. A., and Coauthors, 2013: Ocean–wave coupled modeling in COAMPS-TC: A study of Hurricane Ivan (2004). Ocean Modell., 69, 181194, doi:10.1016/j.ocemod.2013.06.003.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131, 30183037, doi:10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K.-M. Lau, and C.-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921913, doi:10.1175/1520-0493(1996)124<1892:OOAQDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, E. J. Fetzer, and Y. L. Yung, 2010: Vertical moist thermodynamic structure of the Madden–Julian oscillation in atmospheric infrared sounder retrievals: An update and a comparison to ECMWF Interim Re-Analysis. Mon. Wea. Rev., 138, 45764582, doi:10.1175/2010MWR3486.1.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K.-M. Lau, and J.-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358, doi:10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, doi:10.1007/BF01026810.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of the air–sea interaction in maintaining the Madden–Julian oscillation. J. Climate, 11, 21162135, doi:10.1175/1520-0442-11.8.2116.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 2003: Composite singular value decomposition analysis of moisture variations associated with the Madden–Julian oscillation. J. Climate, 16, 37793792, doi:10.1175/1520-0442(2003)016<3779:CSVDAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 16371654, doi:10.1175/1520-0469(2003)060<1637:CCEWAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., K. Yoneyama, Q. Moteki, M. Fujita, Y. N. Takayabu, J. Suzuki, T. Ushiyama, and B. Mapes, 2010: Characteristics of 3–4- and 6–8-day period disturbances observed over the tropical Indian Ocean. Mon. Wea. Rev., 138, 41584174, doi:10.1175/2010MWR3469.1.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. Long, 2013: Tracing pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 1871–1891, doi:10.1175/BAMS-D-12-00157.1.

  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 644 309 34
PDF Downloads 250 97 13