The Influence of the Spectral Truncation on the Simulation of Waves in the Tropical Stratosphere

T. R. Krismer Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by T. R. Krismer in
Current site
Google Scholar
PubMed
Close
,
M. A. Giorgetta Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by M. A. Giorgetta in
Current site
Google Scholar
PubMed
Close
,
J. S. von Storch Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by J. S. von Storch in
Current site
Google Scholar
PubMed
Close
, and
I. Fast German Climate Computing Centre (DKRZ), Hamburg, Germany

Search for other papers by I. Fast in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Convectively triggered waves are the main driver of the tropical stratospheric circulation. In atmospheric models, the model’s resolution limits the length of the simulated wave spectrum. In this study, the authors compare the tropical tropospheric wave sources, their projection on the wave field in the lower stratosphere, and the circumstances of their upward propagation in the atmospheric model ECHAM6 with three spectral truncations of T63, T127, and T255. The model internally generates the quasi-biennial oscillation (QBO), which dominates the variability in the tropical stratosphere. This analysis focuses on two opposite phases of the QBO to account for the influence of the background wind field on the wave filtering. It is shown that, compared to the high-resolution model versions, the T63 version has less convective variability and less wave momentum in the lower stratosphere at wavenumbers larger than 20, well below the version’s truncation limit. In the low-resolution version, the upward propagation of the waves is further hindered by the highly active (relative to the high-resolution versions) horizontal diffusion scheme. However, even in the T255 version of ECHAM6, the convective variability is too small compared to TRMM observations at periods shorter than 2 days and wavelengths shorter than 1000 km. Hence, to model a realistic tropical wave activity, the convective parameterization of the model has to improve to increase the day-to-day precipitation variability.

Denotes Open Access content.

Corresponding author address: Marco Giorgetta, Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany. E-mail: marco.giorgetta@mpimet.mpg.de

Abstract

Convectively triggered waves are the main driver of the tropical stratospheric circulation. In atmospheric models, the model’s resolution limits the length of the simulated wave spectrum. In this study, the authors compare the tropical tropospheric wave sources, their projection on the wave field in the lower stratosphere, and the circumstances of their upward propagation in the atmospheric model ECHAM6 with three spectral truncations of T63, T127, and T255. The model internally generates the quasi-biennial oscillation (QBO), which dominates the variability in the tropical stratosphere. This analysis focuses on two opposite phases of the QBO to account for the influence of the background wind field on the wave filtering. It is shown that, compared to the high-resolution model versions, the T63 version has less convective variability and less wave momentum in the lower stratosphere at wavenumbers larger than 20, well below the version’s truncation limit. In the low-resolution version, the upward propagation of the waves is further hindered by the highly active (relative to the high-resolution versions) horizontal diffusion scheme. However, even in the T255 version of ECHAM6, the convective variability is too small compared to TRMM observations at periods shorter than 2 days and wavelengths shorter than 1000 km. Hence, to model a realistic tropical wave activity, the convective parameterization of the model has to improve to increase the day-to-day precipitation variability.

Denotes Open Access content.

Corresponding author address: Marco Giorgetta, Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany. E-mail: marco.giorgetta@mpimet.mpg.de
Save
  • Alexander, M. J., P. T. May, and J. H. Beres, 2004: Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. J. Geophys. Res., 109, D20S04, doi:10.1029/2004JD004729.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, doi:10.1029/1999RG000073.

  • Bergman, J. W., and M. L. Salby, 1994: Equatorial wave activity derived from fluctuations in observed convection. J. Atmos. Sci., 51, 37913806, doi:10.1175/1520-0469(1994)051<3791:EWADFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, N., E. Gerber, and O. Bühler, 2014: What drives the Brewer–Dobson circulation? J. Atmos. Sci., 71, 38373855, doi:10.1175/JAS-D-14-0021.1.

    • Search Google Scholar
    • Export Citation
  • Crueger, T., C. Hohenegger, and W. May, 2013: Tropical precipitation and convection changes in the Max Planck Institute Earth system model (MPI-ESM) in response to CO2 forcing. J. Adv. Model. Earth Syst., 5, 8597, doi:10.1002/jame.20012.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076, doi:10.1029/96JD02999.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and M. P. Baldwin, 1991: Quasi-biennial modulation of planetary-wave fluxes in the Northern Hemisphere winter. J. Atmos. Sci., 48, 1043–1061, doi:10.1175/1520-0469(1991)048<1043:QBMOPW>2.0.CO;2.

  • Ern, M., and P. Preusse, 2009: Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys. Res. Lett., 36, L21801, doi:10.1029/2009GL040493.

  • Ern, M., H.-K. Cho, P. Preusse, and S. D. Eckermann, 2009: Properties of the average distribution of equatorial Kelvin waves investigated with the GROGRAT ray tracer. Atmos. Chem. Phys., 9, 79737995, doi:10.5194/acp-9-7973-2009.

    • Search Google Scholar
    • Export Citation
  • Ern, M., and Coauthors, 2014: Interaction of gravity waves with the QBO: A satellite perspective. J. Geophys. Res. Atmos., 119, 2329–2355, doi:10.1002/2013JD020731.

    • Search Google Scholar
    • Export Citation
  • Evan, S., M. J. Alexander, and J. Dudhia, 2012: WRF simulations of convectively generated gravity waves in opposite QBO phases. J. Geophys. Res., 117, D12117, doi:10.1029/2011JD017302.

  • Fritts, D., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970, doi:10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19, 38823901, doi:10.1175/JCLI3830.1.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2012: CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-MR model: The AMIP experiment. World Data Center for Climate, accessed 5 December 2014, doi:10.1594/WDCC/CMIP5.MXMRam.

  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, doi:10.1002/jame.20038.

    • Search Google Scholar
    • Export Citation
  • Hertwig, E., J. S. von Storch, D. Handorf, K. Dethloff, I. Fast, and T. R. Krismer, 2014: Effect of horizontal resolution on ECHAM6-AMIP performance. Climate Dyn., 45, 185–211, doi:10.1007/s00382-014-2396-x.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys., 59, 371386, doi:10.1016/S1364-6826(96)00079-X.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol.-Terr. Phys., 59, 387400, doi:10.1016/S1364-6826(96)00080-6.

    • Search Google Scholar
    • Export Citation
  • Holton, J., and R. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, doi:10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and Coauthors, 2003: Tropical cumulus convection and upward-propagating waves in middle-atmospheric GCMs. J. Atmos. Sci., 60, 27652782, doi:10.1175/1520-0469(2003)060<2765:TCCAUW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., S. Watanabe, K. Sato, T. J. Dunkerton, S. Miyahara, and M. Takahashi, 2010: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980, doi:10.1175/2009JAS3222.1.

    • Search Google Scholar
    • Export Citation
  • Krismer, T. R., and M. A. Giorgetta, 2014: Wave forcing of the quasi-biennial oscillation in the Max Planck Institute Earth System Model. J. Atmos. Sci., 71, 19852006, doi:10.1175/JAS-D-13-0310.1.

    • Search Google Scholar
    • Export Citation
  • Krismer, T. R., M. A. Giorgetta, and M. Esch, 2013: Seasonal aspects of the quasi-biennial oscillation in the Max Planck Institute Earth System Model and ERA-40. J. Adv. Model. Earth Syst., 5, 406421, doi:10.1002/jame.20024.

    • Search Google Scholar
    • Export Citation
  • Lott, F., 1999: Alleviation of stationary biases in a GCM through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mon. Wea. Rev., 127, 788801, doi:10.1175/1520-0493(1999)127<0788:AOSBIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and Coauthors, 2014: Kelvin and Rossby-gravity wave packets in the lower stratosphere of some high-top CMIP5 models. J. Geophys. Res. Atmos., 119, 21562173, doi:10.1002/2013JD020797.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., and N. A. McFarlane, 1998: The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model. J. Geophys. Res., 103, 31 52331 539, doi:10.1029/98JD02274.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., N. A. McFarlane, and C. McLandress, 1997: Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J. Geophys. Res., 102, 25 75125 762, doi:10.1029/97JD01096.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881, doi:10.1175/JCLI3826.1.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2012: Tuning the climate of a global model. J. Adv. Model. Earth Syst., 4, M00A01, doi:10.1029/2012MS000154.

  • Maury, P., F. Lott, L. Guez, and J.-P. Duvel, 2013: Tropical variability and stratospheric equatorial waves in the IPSLCM5 model. Climate Dyn., 40, 23312344, doi:10.1007/s00382-011-1273-0.

    • Search Google Scholar
    • Export Citation
  • NASA, 2014: TRMM_3B42_daily version 6: Daily TRMM and other satellites precipitation product (3B42 V6 derived). Goddard Space Flight Center Distributed Active Archive Center, accessed April 2014. [Available online at http://disc.sci.gsfc.nasa.gov/datacollection/TRMM_3B42_daily_V6.html.]

  • Ortland, D. A., M. J. Alexander, and A. W. Grimsdell, 2011: On the wave spectrum generated by tropical heating. J. Atmos. Sci., 68, 2042–2060, doi:10.1175/2011JAS3718.1.

  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458498, doi:10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sato, K., and T. J. Dunkerton, 1997: Estimates of momentum flux associated with equatorial Kelvin and gravity waves. J. Geophys. Res., 102, 26 247–26 261, doi:10.1029/96JD02514.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, D. Stainforth, W. Norton, and J. Austin, 2000: Realistic quasi-biennial oscillations in a simulation of the global climate. Geophys. Res. Lett., 27, 34813484, doi:10.1029/2000GL011625.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and Coauthors, 2013: Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model. J. Adv. Model. Earth Syst., 5, 98116, doi:10.1002/jame.20014.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., 1999: Simulation of the Quasi-Biennial Oscillation in a general circulation model. Geophys. Res. Lett., 26, 1307–1310, doi:10.1029/1999GL900188.

  • Tomassini, L., E. P. Gerber, M. P. Baldwin, F. Bunzel, and M. Giorgetta, 2012: The role of stratosphere–troposphere coupling in the occurrence of extreme winter cold spells over northern Europe. J. Adv. Model. Earth Syst., 4, M00A03, doi:10.1029/2012MS000177.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteor. Soc. Japan, 44, 291–294.

  • Zhu, X., 1993: Radiative damping revisited: Parameterization of damping rate in the middle atmosphere. J. Atmos. Sci., 50, 3008–3021, doi:10.1175/1520-0469(1993)050<3008:RDRPOD>2.0.CO;2.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 209 49 1
PDF Downloads 141 26 2