Applications of a Moist Nonhydrostatic Formulation of the Spectral Energy Budget to Baroclinic Waves. Part II: The Upper-Tropospheric Energy Spectra

Jun Peng Academy of Ocean Science and Engineering, National University of Defense Technology, Changsha, China

Search for other papers by Jun Peng in
Current site
Google Scholar
PubMed
Close
,
Lifeng Zhang College of Meteorology and Oceanography, People’s Liberation Army University of Science and Technology, Nanjing, China

Search for other papers by Lifeng Zhang in
Current site
Google Scholar
PubMed
Close
, and
Jiping Guan College of Meteorology and Oceanography, People’s Liberation Army University of Science and Technology, Nanjing, China

Search for other papers by Jiping Guan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this second part of a two-part study, a newly developed moist nonhydrostatic formulation of the spectral energy budget of both kinetic energy (KE) and available potential energy (APE) is employed to investigate the dynamics underlying the mesoscale upper-tropospheric energy spectra in idealized moist baroclinic waves. By calculating the conservative nonlinear spectral fluxes, it is shown that the inclusion of moist processes significantly enhances downscale cascades of both horizontal KE and APE. Moist processes act not only as a source of latent heat but also as an “atmospheric dehumidifier.” The latent heating, mainly because of the depositional growth of cloud ice, has a significant positive contribution to mesoscale APE. However, the dehumidifying reduces the diabatic contribution of the latent heating by 15% at all scales. Including moist processes also changes the direction of the mesoscale conversion between APE and horizontal KE and adds a secondary conversion of APE to gravitational energy of moist species. With or without moisture, the vertically propagating inertia–gravity waves (IGWs) produced in the lower troposphere result in a significant positive contribution to the upper-tropospheric horizontal KE spectra at the large-scale end of the mesoscale. However, including moist processes generates additional sources of IGWs located in the upper troposphere; the upward propagation of the convectively generated IGWs removes much of the horizontal KE there. Because of the restriction of the anelastic approximation, the three-dimensional divergence has no significant contribution. In view of conflicting contributions of various direct forcings, finally, an explicit comparison between the net direct forcing and energy cascade is made.

Corresponding author address: Lifeng Zhang, College of Meteorology and Oceanography, PLA University of Science and Technology, Zhong Hua Men Wai, Nanjing 211101, China. E-mail: zhanglif@yeah.net

Abstract

In this second part of a two-part study, a newly developed moist nonhydrostatic formulation of the spectral energy budget of both kinetic energy (KE) and available potential energy (APE) is employed to investigate the dynamics underlying the mesoscale upper-tropospheric energy spectra in idealized moist baroclinic waves. By calculating the conservative nonlinear spectral fluxes, it is shown that the inclusion of moist processes significantly enhances downscale cascades of both horizontal KE and APE. Moist processes act not only as a source of latent heat but also as an “atmospheric dehumidifier.” The latent heating, mainly because of the depositional growth of cloud ice, has a significant positive contribution to mesoscale APE. However, the dehumidifying reduces the diabatic contribution of the latent heating by 15% at all scales. Including moist processes also changes the direction of the mesoscale conversion between APE and horizontal KE and adds a secondary conversion of APE to gravitational energy of moist species. With or without moisture, the vertically propagating inertia–gravity waves (IGWs) produced in the lower troposphere result in a significant positive contribution to the upper-tropospheric horizontal KE spectra at the large-scale end of the mesoscale. However, including moist processes generates additional sources of IGWs located in the upper troposphere; the upward propagation of the convectively generated IGWs removes much of the horizontal KE there. Because of the restriction of the anelastic approximation, the three-dimensional divergence has no significant contribution. In view of conflicting contributions of various direct forcings, finally, an explicit comparison between the net direct forcing and energy cascade is made.

Corresponding author address: Lifeng Zhang, College of Meteorology and Oceanography, PLA University of Science and Technology, Zhong Hua Men Wai, Nanjing 211101, China. E-mail: zhanglif@yeah.net
Save
  • Augier, P., and E. Lindborg, 2013: A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci., 70, 22932308, doi:10.1175/JAS-D-12-0281.1.

    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., 2005: Eulerian available energetics in moist atmospheres. J. Atmos. Sci., 62, 42384252, doi:10.1175/JAS3516.1.

  • Davies, H. C., C. Schär, and H. Wernli, 1991: The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci., 48, 16661689, doi:10.1175/1520-0469(1991)048<1666:TPOFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2010: Simulations of subtropical cyclones in a baroclinic channel model. J. Atmos. Sci., 67, 28712892, doi:10.1175/2010JAS3411.1.

    • Search Google Scholar
    • Export Citation
  • Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, doi:10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deusebio, E., A. Vallgren, and E. Lindborg, 2013: The route to dissipation in strongly stratified and rotating flows. J. Fluid Mech., 720, 66103, doi:10.1017/jfm.2012.611.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1979: Stratospheric wave spectra resembling turbulence. Science, 204, 832835, doi:10.1126/science.204.4395.832.

  • Gage, K. S., 1979: Evidence for a k−5/3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci., 36, 19501954, doi:10.1175/1520-0469(1979)036<1950:EFALIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gkioulekas, E., and K. K. Tung, 2005a: On the double cascades of energy and enstrophy in two-dimensional turbulence. Part 1. Theoretical formulation. Discrete Contin. Dyn. Syst., 5B, 79102, doi:10.3934/dcdsb.2005.5.79.

    • Search Google Scholar
    • Export Citation
  • Gkioulekas, E., and K. K. Tung, 2005b: On the double cascades of energy and enstrophy in two-dimensional turbulence. Part 2. Approach to the KLB limit and interpretation of experimental evidence. Discrete Contin. Dyn. Syst., 5B, 103124, doi:10.3934/dcdsb.2005.5.103.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749761, doi:10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, doi:10.1017/S0022112005008128.

  • Pauluis, O., and I. M. Held, 2002: Entropy budget of an atmosphere in radiative–convective equilibrium. Part I: Maximum work and frictional dissipation. J. Atmos. Sci., 59, 140149, doi:10.1175/1520-0469(2002)059<0140:EBOAAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, Y. Luo, and C. Xiong, 2014: Mesoscale energy spectra of the mei-yu front system. Part II: Moist available potential energy spectra. J. Atmos. Sci., 71, 14101424, doi:10.1175/JAS-D-13-0319.1.

    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, and J. Guang, 2015: Applications of a moist nonhydrostatic formulation of the spectral energy budget to baroclinic waves. Part I: The lower-stratospheric energy spectra. J. Atmos. Sci., 72, 20902108, doi:10.1175/JAS-D-14-0306.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, S. A., D. C. Fritts, and T. E. Vanzandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44, 14041410, doi:10.1175/1520-0469(1987)044<1404:EFASSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943211, doi:10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tan, Z.-M., F. Zhang, R. Rotunno, and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 17941804, doi:10.1175/1520-0469(2004)061<1794:MPOMBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2009: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum. J. Atmos. Sci., 66, 450467, doi:10.1175/2008JAS2653.1.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835, doi:10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, doi:10.1175/2008JAS2829.1.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, doi:10.1175/JAS-D-11-0347.1.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., R. Fehlmann, and D. Lüthi, 1998: The effect of barotropic shear on upper-level induced cyclogenesis: Semigeostrophic and primitive equation numerical simulations. J. Atmos. Sci., 55, 20802094, doi:10.1175/1520-0469(1998)055<2080:TEOBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 189 87 5
PDF Downloads 224 91 5