On the Rapid Intensification of Hurricane Wilma (2005). Part III: Effects of Latent Heat of Fusion

William Miller Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by William Miller in
Current site
Google Scholar
PubMed
Close
,
Hua Chen Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Hua Chen in
Current site
Google Scholar
PubMed
Close
, and
Da-Lin Zhang Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Da-Lin Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impacts of the latent heat of fusion on the rapid intensification (RI) of Hurricane Wilma (2005) are examined by comparing a 72-h control simulation (CTL) of the storm to a sensitivity simulation in which the latent heat of deposition is reduced by removing fusion heating (NFUS). Results show that, while both storms undergo RI, the intensification rate is substantially reduced in NFUS. At peak intensity, NFUS is weaker than CTL by 30 hPa in minimum central pressure and by 12 m s−1 in maximum surface winds. The reduced rate of surface pressure falls in NFUS appears to result hydrostatically from less upper-level warming in the eye. It is shown that CTL generates more inner-core convective bursts (CBs) during RI, with higher altitudes of peak vertical motion in the eyewall, compared to NFUS. The latent heat of fusion contributes positively to sufficient eyewall conditional instability to support CB updrafts. Slantwise soundings taken in CB updraft cores reveal moist adiabatic lapse rates until 200 hPa, where the updraft intensity peaks. These results suggest that CBs may impact hurricane intensification by inducing compensating subsidence of the lower-stratospheric air, and the authors conclude that the development of more CBs inside the upper-level radius of maximum wind and at the higher altitude of latent heating all appear to be favorable for the RI of Wilma.

Corresponding author address: Dr. Da-Lin Zhang, Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, 2419 CSS Building, College Park, MD 20742-2425. E-mail: dalin@atmos.umd.edu

Abstract

The impacts of the latent heat of fusion on the rapid intensification (RI) of Hurricane Wilma (2005) are examined by comparing a 72-h control simulation (CTL) of the storm to a sensitivity simulation in which the latent heat of deposition is reduced by removing fusion heating (NFUS). Results show that, while both storms undergo RI, the intensification rate is substantially reduced in NFUS. At peak intensity, NFUS is weaker than CTL by 30 hPa in minimum central pressure and by 12 m s−1 in maximum surface winds. The reduced rate of surface pressure falls in NFUS appears to result hydrostatically from less upper-level warming in the eye. It is shown that CTL generates more inner-core convective bursts (CBs) during RI, with higher altitudes of peak vertical motion in the eyewall, compared to NFUS. The latent heat of fusion contributes positively to sufficient eyewall conditional instability to support CB updrafts. Slantwise soundings taken in CB updraft cores reveal moist adiabatic lapse rates until 200 hPa, where the updraft intensity peaks. These results suggest that CBs may impact hurricane intensification by inducing compensating subsidence of the lower-stratospheric air, and the authors conclude that the development of more CBs inside the upper-level radius of maximum wind and at the higher altitude of latent heating all appear to be favorable for the RI of Wilma.

Corresponding author address: Dr. Da-Lin Zhang, Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, 2419 CSS Building, College Park, MD 20742-2425. E-mail: dalin@atmos.umd.edu
Save
  • Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 18871909, doi:10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., H. B. Bluestein, and M. L. Black, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122, 27222739, doi:10.1175/1520-0493(1994)122<2722:USVMIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592, doi:10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2004: A reevaluation of ice–liquid water potential temperature. J. Atmos. Sci., 132, 24212431, doi:10.1175/1520-0493(2004)132<2421:AROIWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, doi:10.1175/JAS-D-12-062.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885901, doi:10.1175/WAF-D-11-00001.1.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and S. L. Gray, 1996: CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 35283540, doi:10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227, doi:10.1175/MWR-2849.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, doi:10.1002/qj.49712051902.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., and J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477494, doi:10.1175/2010JAS3659.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., J. Simpson, M. A. LeMone, J. M. Straka, and B. F. Smull, 2009: On how hot towers fuel the Hadley cell: An observational and modeling study of line-organized convection in the equatorial trough from TOGA COARE. J. Atmos. Sci., 66, 27302746, doi:10.1175/2009JAS3017.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. J. Zipser, M. A. LeMone, J. M. Straka, and J. Simpson, 2012: Tropical oceanic hot towers: Need they be undilute to transport energy from the boundary layer to the upper troposphere effectively? An answer based on trajectory analysis of a simulation of a TOGA COARE convective system. J. Atmos. Sci., 69, 195213, doi:10.1175/JAS-D-11-0147.1.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. J. Lord, and F. D. Marks Jr., 1988: Dropwindsonde and radar observations of the eye of Hurricane Gloria (1985). Mon. Wea. Rev., 116, 12371244, doi:10.1175/1520-0493(1988)116<1237:DAROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., R. J. Pasch, L. A. Avila, J. L. Beven II, M. B. Lawrence, S. R. Stewart, and E. S. Blake, 2006: Atlantic Hurricane season of 2004. Mon. Wea. Rev., 134, 9811025, doi:10.1175/MWR3096.1.

    • Search Google Scholar
    • Export Citation
  • Frisius, T., and D. Schönemann, 2012: An extended model for the potential intensity of tropical cyclones. J. Atmos. Sci., 69, 641661, doi:10.1175/JAS-D-11-064.1.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, doi:10.1175/2009JAS3119.1.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 13101330, doi:10.1175/1520-0450(2001)040<1310:EDRIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213232, doi:10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 10221034, doi:10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856, doi:10.1175/1520-0469(1985)042<0839:VMIIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kieper, M., and H. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave instruments. Geophys. Res. Lett., 39, L13804, doi:10.1029/2012GL052115.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., H. Chen, and D.-L. Zhang, 2010: An examination of the pressure–wind relationship for intense tropical cyclones. Wea. Forecasting, 25, 895907, doi:10.1175/2010WAF2222344.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M. B., B. M. Mayfield, L. A. Avila, R. J. Pasch, and E. N. Rappaport, 1998: Atlantic hurricane season of 1995. Mon. Wea. Rev., 126, 11241151, doi:10.1175/1520-0493(1998)126<1124:AHSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M. B., L. A. Avila, J. L. Beven, J. L. Franklin, J. L. Guiney, and R. J. Pasch, 2001: Atlantic hurricane season of 1999. Mon. Wea. Rev., 129, 30573084, doi:10.1175/1520-0493(2001)129<3057:AHSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 25972616, doi:10.1175/1520-0493(1999)127<2597:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 12961317, doi:10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1996: Wind profiler observations of vertical motion and precipitation microphysics of a tropical squall line. Mon. Wea. Rev., 124, 621633, doi:10.1175/1520-0493(1996)124<0621:WPOOVM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., B. F. Jewett, M. S. Gilmore, S. W. Nesbitt, and T.-L. Hsieh, 2012: Vertical velocity and microphysical distributions related to rapid intensification in a simulation of Hurricane Dennis (2005). J. Atmos. Sci., 69, 35153534, doi:10.1175/JAS-D-12-016.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885, doi:10.1175/2010MWR3378.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Moore, and V. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534, doi:10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 24522463, doi:10.1175/JAS-D-11-0254.1.

    • Search Google Scholar
    • Export Citation
  • Ohno, T., and M. Satoh, 2015: On the warm core of a tropical cyclone formed near the tropopause. J. Atmos. Sci., 72, 551571, doi:10.1175/JAS-D-14-0078.1.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369380.

  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371, doi:10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, C., M. Asfur, and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2, 329332, doi:10.1038/ngeo477.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., W. S. Olson, V. M. Karyampudi, and H. F. Pierce, 1998: Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126, 12291247, doi:10.1175/1520-0493(1998)126<1229:SDLHDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., W. S. Olson, J. Halverson, J. Simpson, and H. Pierce, 2000: Environmental forcing of Supertyphoon Paka’s (1997) latent heat structure. J. Appl. Meteor., 39, 19832006, doi:10.1175/1520-0450(2001)040<1983:EFOSPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470, doi:10.1175/2009JAS3122.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, doi:10.1175/MWR-D-14-00175.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Elsevier, 290 pp.

  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484, doi:10.1175/2009JAS3184.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1980: Tropical cyclone eye dynamics. J. Atmos. Sci., 37, 12271232, doi:10.1175/1520-0469(1980)037<1227:TCED>2.0.CO;2.

  • Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, doi:10.1175/JAS-D-11-0329.1.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, doi:10.1175/MWR-D-14-00078.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, doi:10.1175/MWR-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014: Characteristics of convective processes and vertical velocity from the tropical wave to tropical cyclone stage in a high-resolution numerical model simulation of Tropical Cyclone Fay (2008). J. Atmos. Sci., 71, 896915, doi:10.1175/JAS-D-13-0256.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and N. Renno, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121, 2136, doi:10.1175/1520-0493(1993)121<0021:AAOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 30533067, doi:10.1175/1520-0493(1998)126<3053:TCET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995a: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 19211940, doi:10.1175/1520-0493(1995)123<1921:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995b: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, doi:10.1175/JAS-D-13-0314.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and C. Q. Kieu, 2006: Potential vorticity diagnosis of a simulated hurricane. Part II: Quasi-balanced contributions to forced secondary circulations. J. Atmos. Sci., 63, 28982914, doi:10.1175/JAS3790.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 37723788, doi:10.1175/1520-0493(2001)129<3772:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992): Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763, doi:10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to cloud microphysical processes. J. Atmos. Sci., 63, 109126, doi:10.1175/JAS3599.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 29, Amer. Meteor. Soc., 49–58.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 410 143 18
PDF Downloads 302 90 12