Three-Dimensional Structure and Evolution of the Moisture Field in the MJO

Ángel F. Adames Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Ángel F. Adames in
Current site
Google Scholar
PubMed
Close
and
John M. Wallace Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by John M. Wallace in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The large-scale circulation features that determine the structure and evolution of MJO-related moisture and precipitation fields are examined using a linear analysis protocol based on daily 850- minus 150-hPa global velocity potential data. The analysis is augmented by a compositing procedure that emphasizes the structural features over the Indo-Pacific warm pool sector (60°E–180°) that give rise to the eastward propagation of the enhanced moisture and precipitation.

It is found that boundary layer (BL) convergence in the low-level easterlies to the east of the region of maximum ascent produces a deep but narrow plume of equatorial ascent that moistens the midtroposphere, while weakly diffluent flow above the BL spreads moisture away from the equator. Vertical advection of moisture from this plume of ascent accounts for the eastward propagation of the positive moisture anomalies across the Maritime Continent into the western Pacific. When the convection is first developing over the Indian Ocean, horizontal moisture advection contributes to both the eastward propagation and the amplification of the positive moisture anomalies along the equator to the east of the region of enhanced convection. Neither horizontal advection nor the net moistening from vertical advection and the apparent moisture sink exhibit significant westward tilt with height in the equatorial plane, but when they are superposed they explain the westward tilt of the moisture field. The strong spatial correlation between relative humidity and vertical velocity underscores the important role of equatorial wave dynamics in shaping the structure and evolution of the MJO.

Denotes Open Access content.

Corresponding author address: Ángel F. Adames, Department of Atmospheric Sciences, University of Washington, 408 ATG Building, Box 351640, Seattle, WA 98195-1640. E-mail: angelf88@atmos.washington.edu

Abstract

The large-scale circulation features that determine the structure and evolution of MJO-related moisture and precipitation fields are examined using a linear analysis protocol based on daily 850- minus 150-hPa global velocity potential data. The analysis is augmented by a compositing procedure that emphasizes the structural features over the Indo-Pacific warm pool sector (60°E–180°) that give rise to the eastward propagation of the enhanced moisture and precipitation.

It is found that boundary layer (BL) convergence in the low-level easterlies to the east of the region of maximum ascent produces a deep but narrow plume of equatorial ascent that moistens the midtroposphere, while weakly diffluent flow above the BL spreads moisture away from the equator. Vertical advection of moisture from this plume of ascent accounts for the eastward propagation of the positive moisture anomalies across the Maritime Continent into the western Pacific. When the convection is first developing over the Indian Ocean, horizontal moisture advection contributes to both the eastward propagation and the amplification of the positive moisture anomalies along the equator to the east of the region of enhanced convection. Neither horizontal advection nor the net moistening from vertical advection and the apparent moisture sink exhibit significant westward tilt with height in the equatorial plane, but when they are superposed they explain the westward tilt of the moisture field. The strong spatial correlation between relative humidity and vertical velocity underscores the important role of equatorial wave dynamics in shaping the structure and evolution of the MJO.

Denotes Open Access content.

Corresponding author address: Ángel F. Adames, Department of Atmospheric Sciences, University of Washington, 408 ATG Building, Box 351640, Seattle, WA 98195-1640. E-mail: angelf88@atmos.washington.edu
Save
  • Adames, Á. F., and J. M. Wallace, 2014a: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, doi:10.1175/JAS-D-13-0254.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2014b: Three-dimensional structure and evolution of the vertical velocity and divergence fields in the MJO. J. Atmos. Sci., 71, 46614681, doi:10.1175/JAS-D-14-0091.1.

    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., and R. A. Houze, 2013: The precipitating cloud population of the Madden-Julian Oscillation over the Indian and west Pacific Oceans. J. Geophys. Res. Atmos., 118, 69967023, doi:10.1002/jgrd.50375.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and K. A. Emanuel, 2005: On the role of moist processes in tropical intraseasonal variability: Cloud–radiation and moisture–convection feedbacks. J. Atmos. Sci., 62, 27702789, doi:10.1175/JAS3506.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, doi:10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, doi:10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, D. A. Randall, and M. D. Branson, 2014: Intraseasonal variability in coupled GCMs: The roles of ocean feedbacks and model physics. J. Climate, 27, 49704995, doi:10.1175/JCLI-D-13-00760.1.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, K. Landu, and C. N. Long, 2014: Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 6, 938949, doi:10.1002/2014MS000335.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative-convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, doi:10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, doi:10.1175/JAS-D-12-089.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396–410.

  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 4914–4931, doi:10.1175/JCLI-D-11-00310.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2011: Vertical diabatic heating structure of the MJO: Intercomparison between recent reanalyses and TRMM estimates. Mon. Wea. Rev., 139, 32083223, doi:10.1175/2011MWR3636.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 3157–3179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert, and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598–622, doi:10.1175/JAS-D-14-0202.1.

    • Search Google Scholar
    • Export Citation
  • Kållberg, P., P. Berrisford, B. Hoskins, A. Simmmons, S. Uppala, S. Lamy-Thépaut, and R. Hine, 2005: ERA-40 atlas. ECMWF Tech. Rep., 191 pp.

  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014a: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-I. Lee, D. Kim, S. Schubert, D. Waliser, and B. Tian, 2014b: Representation of tropical subseasonal variability of precipitation in global reanalyses. Climate Dyn., 43, 517534, doi:10.1007/s00382-013-1890-x.

    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Kumar, V. V., A. Protat, C. Jakob, and P. T. May, 2014: On the atmospheric regulation of the growth of moderate to deep cumulonimbus in a tropical environment. J. Atmos. Sci., 71, 11051120, doi:10.1175/JAS-D-13-0231.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972, doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H.-T. Wu, 2010: Characteristics of precipitation, cloud, and latent heating associated with the Madden–Julian oscillation. J. Climate, 23, 504518, doi:10.1175/2009JCLI2920.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillation. J. Atmos. Sci., 61, 20502062, doi:10.1175/1520-0469(2004)061<2050:RBOTTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156179, doi:10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2.

  • López Carrillo, C., and D. J. Raymond, 2005: Moisture tendency equations in a tropical atmosphere. J. Atmos. Sci., 62, 16011613, doi:10.1175/JAS3424.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, doi:10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 21532168, doi:10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S.-P. Xie, 2013: Sensitivity of tropical intraseasonal variability to the pattern of climate warming. J. Adv. Model. Earth Syst., 5, 3247, doi:10.1029/2012MS000171.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and J. T. Bacmeister, 2012: Diagnosis of tropical biases and the MJO from patterns in the MERRA analysis tendency fields. J. Climate, 25, 62026214, doi:10.1175/JCLI-D-11-00424.1.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2013: A satellite study of tropical moist convection and environmental variability: A moisture and thermal budget analysis. J. Atmos. Sci., 70, 24432466, doi:10.1175/JAS-D-12-0273.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Monteiro, J. M., Á. F. Adames, J. M. Wallace, and J. S. Sukhatme, 2014: Interpreting the upper level structure of the Madden-Julian oscillation. Geophys. Res. Lett., 41, 91589165, doi:10.1002/2014GL062518.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., L. E. Back, P. A. O’Gorman, and K. A. Emanuel, 2009: A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett., 36, L16804, doi:10.1029/2009GL039667.

  • Myers, D. S., and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16, 929950, doi:10.1175/1520-0442(2003)016<0929:TDWVAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze, 2013: The cloud population and onset of the Madden-Julian Oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, doi:10.1002/2013JD020421.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, doi:10.1175/JAS-D-13-0119.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, doi:10.1175/2008JCLI2739.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358, doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and W. Wang, 2010: The Madden–Julian oscillation simulated in the NCEP Climate Forecast System model: The importance of stratiform heating. J. Climate, 23, 47704793, doi:10.1175/2010JCLI2983.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, doi:10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, E. J. Fetzer, and Y. L. Yung, 2010: Vertical moist thermodynamic structure of the Madden–Julian oscillation in Atmospheric Infrared Sounder retrievals: An update and a comparison to ECMWF Interim Re-Analysis. Mon. Wea. Rev., 138, 45764582, doi:10.1175/2010MWR3486.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. International Geophysics Series, Vol. 92, Academic Press, 504 pp.

  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 20512065, doi:10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397413, doi:10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, doi:10.1175/JAS-D-13-0372.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and R. H. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 39–62.

  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/ 1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2012: Potential vorticity of the Madden–Julian oscillation. J. Atmos. Sci., 69, 6578, doi:10.1175/JAS-D-11-081.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., and H. Hendon, 2015: Role of large-scale moisture advection for simulation of the MJO with increased entrainment. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2510, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 769 236 29
PDF Downloads 724 236 42