Synthesis of Vortex Rossby Waves. Part I: Episodically Forced Waves in the Inner Waveguide

Amaryllis Cotto National Weather Service, WFO, San Juan, Puerto Rico

Search for other papers by Amaryllis Cotto in
Current site
Google Scholar
PubMed
Close
,
Israel Gonzalez III Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Israel Gonzalez III in
Current site
Google Scholar
PubMed
Close
, and
Hugh E. Willoughby Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Hugh E. Willoughby in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Spiral cloud bands dominate tropical cyclones’ appearance in satellite and radar images. It is generally accepted that at least some of them are vortex Rossby waves that propagate on the radial gradient of mean-flow-relative vorticity. This study models these features in Fourier and time domains as linear, barotropic, nondivergent waves on a maintained mean vortex scaled to resemble tropical cyclones. This formulation is the simplest one imaginable that encompasses the essential rotational dynamics.

The modeled waves are episodically forced by a rotating annular train of sinusoidal vorticity sources and sinks that crudely represents eyewall convection. Substantial quiescent time intervals separate forced intervals. The waves propagate wave energy predominantly outward and converge angular momentum inward. Waves’ energy is absorbed as their perturbation vorticity becomes filamented near the outer critical radii where their Doppler-shifted frequencies and radial group velocities approach zero. The waves can propagate spatially only in narrow annular waveguides because of their slow tangential phase velocity and the restricted Rossby wave frequency domain. Although radial shear of the mean flow distorts their velocity field into tightly wound spirals, their streamfunction and geopotential fields assume the form of elliptical gyres or broad trailing spirals that do not resemble observed hurricane rainbands.

Corresponding author address: Dr. Hugh E. Willoughby, Department of Earth and Environment, Florida International University, 11200 SW 8th Street, AHC-5 360, Miami, FL 33199. E-mail: hugh.willoughby@fiu.edu

Abstract

Spiral cloud bands dominate tropical cyclones’ appearance in satellite and radar images. It is generally accepted that at least some of them are vortex Rossby waves that propagate on the radial gradient of mean-flow-relative vorticity. This study models these features in Fourier and time domains as linear, barotropic, nondivergent waves on a maintained mean vortex scaled to resemble tropical cyclones. This formulation is the simplest one imaginable that encompasses the essential rotational dynamics.

The modeled waves are episodically forced by a rotating annular train of sinusoidal vorticity sources and sinks that crudely represents eyewall convection. Substantial quiescent time intervals separate forced intervals. The waves propagate wave energy predominantly outward and converge angular momentum inward. Waves’ energy is absorbed as their perturbation vorticity becomes filamented near the outer critical radii where their Doppler-shifted frequencies and radial group velocities approach zero. The waves can propagate spatially only in narrow annular waveguides because of their slow tangential phase velocity and the restricted Rossby wave frequency domain. Although radial shear of the mean flow distorts their velocity field into tightly wound spirals, their streamfunction and geopotential fields assume the form of elliptical gyres or broad trailing spirals that do not resemble observed hurricane rainbands.

Corresponding author address: Dr. Hugh E. Willoughby, Department of Earth and Environment, Florida International University, 11200 SW 8th Street, AHC-5 360, Miami, FL 33199. E-mail: hugh.willoughby@fiu.edu
Save
  • Andrews, D. G., and M. E. McIntyre, 1976a: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976b: Planetary waves in horizontal and vertical shear: Asymptotic theory for equatorial waves in weak shear. J. Atmos. Sci., 33, 20492053, doi:10.1175/1520-0469(1976)033<2049:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern–Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effects of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312, doi:10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 1976: The noninteraction of waves with the zonally averaged flow on a spherical Earth and the interrelationships on eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 22852291, doi:10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 21282145, doi:10.1175/1520-0469(2001)058<2128:SBIASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60, 12391256, doi:10.1175/1520-0469(2003)60<1239:SBIASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Churchill, R. V., 1963: Fourier Series and Boundary Value Problems. 2nd ed. McGraw-Hill Book Company, 248 pp.

  • Corbosiero, K. L., J. Molinari, and M. T. Black, 2005: The structure and evolution of Hurricane Elena (1985). Part I: Symmetric intensification. Mon. Wea. Rev., 133, 29052921, doi:10.1175/MWR3010.1.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091, doi:10.1175/MWR3250.1.

    • Search Google Scholar
    • Export Citation
  • Cotto, A., 2012: Intermittently forced vortex Rossby waves. M.S. thesis, Dept. of Earth and Environment, Florida International University, 81 pp. [Available online at http://digitalcommons.fiu.edu/etd/553.]

  • Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ. Geophys. Norv., 22 (3), 1–23.

  • Gonzalez, I., III, A. Cotto, and H. E. Willoughby: 2015: Synthesis of vortex Rossby waves. Part II: Vortex motion and waves in the outer waveguide. J. Atmos. Sci., 72, 3958–3974, doi:10.1175/JAS-D-15-0005.1.

  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, doi:10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, doi:10.1175/2009MWR2989.1.

  • Judt, F., and S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 35813599, doi:10.1175/2010JAS3471.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., W. H. Shubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 38933917, doi:10.1175/1520-0469(2001)058<3893:UIBAHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Y. Wang, 2012: Formation and quasi-periodic behavior of outer rainbands in a numerically simulated tropical cyclone. J. Atmos. Sci., 69, 9971020, doi:10.1175/2011JAS3690.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and H. L. Kuo, 1969: A reliable method for the numerical integration of a large class of ordinary and partial differential equations. Mon. Wea. Rev., 97, 732734, doi:10.1175/1520-0493(1969)097<0732:ARMFTN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacDonald, N. J., 1968: The evidence for the existence of Rossby-like waves in the hurricane vortex. Tellus, 20A, 138–150, doi:10.3402/tellusa.v20i1.9993.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y., G. Brunet, and M. K. Yau, 2010a: On the dynamics of two-dimensional hurricane-like convective rings vortex formation. J. Atmos. Sci., 67, 32533267, doi:10.1175/2010JAS3500.1.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y., G. Brunet, and M. K. Yau, 2010b: On the dynamics of two-dimensional hurricane-like vortex symmetrization. J. Atmos. Sci., 67, 35593580, doi:10.1175/2010JAS3499.1.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., and M. K. Yau, 2014: On the role of asymmetric convective bursts to the problem of hurricane intensification: Radiation of vortex Rossby waves and wave–mean flow interactions. J. Atmos. Sci., 71, 20572077, doi:10.1175/JAS-D-13-0343.1.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., M. K. Yau, and Y. Martinez, 2013: Impact of asymmetric dynamical processes on the structure and intensity change of two-dimensional hurricane-like annular vortices. J. Atmos. Sci., 70, 559582, doi:10.1175/JAS-D-12-0192.1.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56, 16741687, doi:10.1175/1520-0469(1999)056<1674:VRWAHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 33663387, doi:10.1175/1520-0469(2000)057<3366:TCEVPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, doi:10.1002/qj.49712353810.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 31763207, doi:10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, C. M., M. J. Reeder, N. E. Davidson, R. K. Smith, and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137, 829844, doi:10.1002/qj.823.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020, doi:10.1175/1520-0469(2002)059<2989:NTDPTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27172745, doi:10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, X., Z. Tan, and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109, doi:10.1175/2010MWR3161.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1963: Some relations between wind and thermal structure of steady state hurricanes. J. Atmos. Sci., 20, 276287, doi:10.1175/1520-0469(1963)020<0276:SRBWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., and R. B. Wilhelmson, 2006: Finescale spiral band features within a numerical simulation of Hurricane Opal (1995). Mon. Wea. Rev., 134, 11211139, doi:10.1175/MWR3108.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2003: On the symmetrization rate of an intense geophysical vortex. Dyn. Atmos. Oceans, 37, 5588, doi:10.1016/S0377-0265(03)00015-0.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2004: Damping and pumping of a vortex Rossby wave in a monotonic cyclone: Critical-layer stirring versus inertia-buoyancy wave emission. Phys. Fluids, 16, 13341348, doi:10.1063/1.1651485.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., H. E. Dubin, A. C. Cass, C. F. Driscoll, I. M. Lansky, and T. M. O’Neil, 2000: Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids, 12, 23972412, doi:10.1063/1.1289505.

    • Search Google Scholar
    • Export Citation
  • Senn, H. V., and H. W. Hiser, 1959: On the origin of hurricane spiral bands. J. Meteor., 16, 419426, doi:10.1175/1520-0469(1959)016<0419:OTOOHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335, doi:10.1175/1520-0469(1993)050<3322:ATDBTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., and M. T. Montgomery, 2002: Wavenumber-2 and wavenumber-m vortex Rossby wave instabilities in a generalized three-region model. J. Atmos. Sci., 59, 24212427, doi:10.1175/1520-0469(2002)059<2421:WAWMVR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1977: Inertia-buoyancy waves in hurricanes. J. Atmos. Sci., 34, 10281039, doi:10.1175/1520-0469(1977)034<1028:IBWIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1978: A possible mechanism for the formation of hurricane rainbands. J. Atmos. Sci., 35, 838848, doi:10.1175/1520-0469(1978)035<0838:APMFTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183189.

  • Willoughby, H. E., 2011: The golden radius in balanced atmospheric flows. Mon. Wea. Rev., 139, 11641168, doi:10.1175/2010MWR3579.1.

  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, doi:10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., E. N. Rappaport, and F. D. Marks, 2007: Hurricane forecasting: The state of the art. Nat. Hazards Rev., 8, 4549, doi:10.1061/(ASCE)1527-6988(2007)8:3(45).

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., L. W. White, H. E. Willoughby, and D. P. Jorgensen, 2013: A new parametric tropical cyclone tangential wind model. Mon. Wea. Rev., 141, 18841909, doi:10.1175/MWR-D-12-00115.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 93 12
PDF Downloads 206 87 16