Synthesis of Vortex Rossby Waves. Part II: Vortex Motion and Waves in the Outer Waveguide

Israel Gonzalez III Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Israel Gonzalez III in
Current site
Google Scholar
PubMed
Close
,
Amaryllis Cotto National Weather Service, WFO, San Juan, Puerto Rico

Search for other papers by Amaryllis Cotto in
Current site
Google Scholar
PubMed
Close
, and
Hugh E. Willoughby Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Hugh E. Willoughby in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Beta, the meridional gradient of planetary vorticity, causes tropical cyclones to propagate poleward and westward at approximately 2 m s−1. In a previous shallow-water linear model, the simulated vortex accelerated without limit, ostensibly because beta forced a free linear mode. In the analogous nonlinear model, wave–wave interaction limited the propagation speed. Subsequent work based upon the asymmetric balance (AB) approximation was unable to replicate the linear result.

The present barotropic nondivergent model replicates the linear beta gyres as a streamfunction dipole with a uniform southeasterly ventilation flow across the vortex. The simulated storm accelerates to unphysical, but finite, speeds that are limited by vorticity filamentation. In the analogous nonlinear model, nonlinearly forced wavenumber-1 gyres have opposite phase to the linear gyres so that their ventilation flow counteracts advection by the linear gyres to limit the overall vortex speed to approximately 3 m s−1.

A bounded mean vortex with zero circulation at large radius must contain an outer annulus of anticyclonic vorticity to satisfy the circulation theorem. The resulting positive mean vorticity gradient constitutes an outer waveguide that supports downstream-propagating, very-low-frequency vortex Rossby waves. It is confined between an inner critical radius where the waves are absorbed and an outer turning point where they are reflected. Vorticity filamentation at the critical radius limits the beta-drift acceleration. The original unlimited linear acceleration stemmed from too-weak dissipation caused by second-order diffusion applied to velocity components instead of vorticity. Fourth-order diffusion and no outer waveguide in the Rankine-like vortex of the AB simulations plausibly explain the different results.

Corresponding author address: Hugh E. Willoughby, Department of Earth and Environment, Florida International University, 11200 SW 8th Street, AHC-5 360, Miami, FL 33199. E-mail: hugh.willoughby@fiu.edu

Abstract

Beta, the meridional gradient of planetary vorticity, causes tropical cyclones to propagate poleward and westward at approximately 2 m s−1. In a previous shallow-water linear model, the simulated vortex accelerated without limit, ostensibly because beta forced a free linear mode. In the analogous nonlinear model, wave–wave interaction limited the propagation speed. Subsequent work based upon the asymmetric balance (AB) approximation was unable to replicate the linear result.

The present barotropic nondivergent model replicates the linear beta gyres as a streamfunction dipole with a uniform southeasterly ventilation flow across the vortex. The simulated storm accelerates to unphysical, but finite, speeds that are limited by vorticity filamentation. In the analogous nonlinear model, nonlinearly forced wavenumber-1 gyres have opposite phase to the linear gyres so that their ventilation flow counteracts advection by the linear gyres to limit the overall vortex speed to approximately 3 m s−1.

A bounded mean vortex with zero circulation at large radius must contain an outer annulus of anticyclonic vorticity to satisfy the circulation theorem. The resulting positive mean vorticity gradient constitutes an outer waveguide that supports downstream-propagating, very-low-frequency vortex Rossby waves. It is confined between an inner critical radius where the waves are absorbed and an outer turning point where they are reflected. Vorticity filamentation at the critical radius limits the beta-drift acceleration. The original unlimited linear acceleration stemmed from too-weak dissipation caused by second-order diffusion applied to velocity components instead of vorticity. Fourth-order diffusion and no outer waveguide in the Rankine-like vortex of the AB simulations plausibly explain the different results.

Corresponding author address: Hugh E. Willoughby, Department of Earth and Environment, Florida International University, 11200 SW 8th Street, AHC-5 360, Miami, FL 33199. E-mail: hugh.willoughby@fiu.edu
Save
  • Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99128, doi:10.1146/annurev.fluid.37.061903.175702.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265, doi:10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotto, A., 2012: Intermittently forced vortex Rossby waves. M.S. thesis, Dept. of Earth and Environment, Florida International University, 81 pp. [Available online at http://digitalcommons.fiu.edu/etd/553.]

  • Cotto, A., I. Gonzalez III, and H. E. Willoughby, 2015: Synthesis of vortex Rossby waves. Part I: Episodically forced waves in the inner waveguide. J. Atmos. Sci., 72, 39403957, doi:10.1175/JAS-D-15-0004.1.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, I., III, 2014: Linear and nonlinear motion of a barotropic vortex. M.S. thesis, Dept. of Geosciences, Florida International University, 44 pp. [Available online at http://digitalcommons.fiu.edu/etd/1196.]

  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, doi:10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1984: Tropical cyclone motion: A comparison of theory and observation. J. Atmos. Sci., 41, 6875, doi:10.1175/1520-0469(1984)041<0068:TCMACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., and B. Wang, 1994: Barotropic dynamics of the beta gyres and beta drift. J. Atmos. Sci., 51, 746756, doi:10.1175/1520-0469(1994)051<0746:BDOTBG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and H. L. Kuo, 1969: A reliable method for the numerical integration of a large class of ordinary and partial differential equations. Mon. Wea. Rev., 97, 732734, doi:10.1175/1520-0493(1969)097<0732:ARMFTN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and K. K. Tung, 1978: Wave overreflection and shear instability. J. Atmos. Sci., 35, 16261632, doi:10.1175/1520-0469(1978)035<1626:WOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. W. Baker, 1985: Instability and overreflection in stably stratified shear flows. J. Fluid Mech., 151, 189217, doi:10.1017/S0022112085000921.

    • Search Google Scholar
    • Export Citation
  • MacDonald, N. J., 1968: The evidence for the existence of Rossby-like waves in the hurricane vortex. Tellus, 20, 138–150, doi:10.1111/j.2153-3490.1968.tb00358.x.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and L. J. Shapiro, 1992: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335, doi:10.1175/1520-0469(1993)050<3322:ATDBTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, doi:10.1002/qj.49712353810.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., D. J. Möller, and C. T. Nicklas, 1999: Linear and nonlinear vortex motion in an asymmetric balance shallow water model. J. Atmos. Sci., 56, 749768, doi:10.1175/1520-0469(1999)056<0749:LANVMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and W. M. Frank, 2007: Interactions between simulated tropical cyclone and an environment with a variable Coriolis parameter. Mon. Wea. Rev., 135, 18891905, doi:10.1175/MWR3359.1.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1948: On displacements and intensity changes of atmospheric vortices. J. Mar. Res., 7, 175187.

  • Schecter, D. A., and M. T. Montgomery, 2003: On the symmetrization rate of an intense geophysical vortex. Dyn. Atmos. Oceans, 37, 5588, doi:10.1016/S0377-0265(03)00015-0.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2004: Damping and pumping of a vortex Rossby wave in a monotonic cyclone: Critical-layer stirring versus inertia-buoyancy wave emission. Phys. Fluids, 16, 13341348, doi:10.1063/1.1651485.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., H. E. Dubin, A. C. Cass, C. F. Driscoll, I. M. Lansky, and T. M. O’Neil, 2000: Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids, 12, 23972412, doi:10.1063/1.1289505.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: Linear motion of a shallow-water, barotropic vortex. J. Atmos. Sci., 45, 19061928, doi:10.1175/1520-0469(1988)045<1906:LMOASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1992: Linear motion of a shallow-water barotropic vortex as an initial-value problem. J. Atmos. Sci., 49, 20152031, doi:10.1175/1520-0469(1992)049<2015:LMOASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1994: Nonlinear motion of a shallow-water barotropic vortex. J. Atmos. Sci., 51, 37223744, doi:10.1175/1520-0469(1994)051<3722:NMOASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 2011: The golden radius in balanced atmospheric flows. Mon. Wea. Rev., 139, 11641168, doi:10.1175/2010MWR3579.1.

  • Wood, V. T., and L. W. White, 2011: A new parametric model of vortex tangential-wind profiles: Development, testing, and verification. J. Atmos. Sci., 68, 9901006, doi:10.1175/2011JAS3588.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 82 8
PDF Downloads 215 68 10