Formulas for Parcel Velocity and Vorticity in a Rotating Cartesian Coordinate System

Robert Davies-Jones NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Robert Davies-Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Formulas in an Eulerian framework are presented for the absolute velocity and vorticity of individual parcels in inviscid isentropic flow. The analysis is performed in a rectangular Cartesian rotating coordinate system. The dependent variables are the Lagrangian coordinates, initial velocities, cumulative temperature, entropy, and a potential. The formulas are obtained in two different ways. The first method is based on finding a matrix integrating factor for the Euler equations of motion and a propagator for the vector vorticity equation. The second method is a variational one. Hamilton’s principle of least action is used to minimize the fluid’s absolute kinetic energy minus its internal energy and potential energy subject to the Lin constraints and constraints of mass and entropy conservation. In the first method, the friction and diabatic heating terms in the governing equations are carried along in integrands so that the generalized formulas lead to Eckart’s circulation theorem. Using them to derive other circulation theorems, the helicity-conservation theorem, and Cauchy’s formula for the barotropic vorticity checks the formulas further.

The formulas are suitable for generating diagnostic fields of barotropic and baroclinic vorticity in models if some simple auxiliary equations are added to the model and integrated stably forward in time alongside the model equations.

Corresponding author address: Dr. Robert Davies-Jones, Doggetts Farm, New Street, Stradbroke, Eye, Suffolk IP21 5JG, United Kingdom. E-mail: bobdj1066@yahoo.com

Abstract

Formulas in an Eulerian framework are presented for the absolute velocity and vorticity of individual parcels in inviscid isentropic flow. The analysis is performed in a rectangular Cartesian rotating coordinate system. The dependent variables are the Lagrangian coordinates, initial velocities, cumulative temperature, entropy, and a potential. The formulas are obtained in two different ways. The first method is based on finding a matrix integrating factor for the Euler equations of motion and a propagator for the vector vorticity equation. The second method is a variational one. Hamilton’s principle of least action is used to minimize the fluid’s absolute kinetic energy minus its internal energy and potential energy subject to the Lin constraints and constraints of mass and entropy conservation. In the first method, the friction and diabatic heating terms in the governing equations are carried along in integrands so that the generalized formulas lead to Eckart’s circulation theorem. Using them to derive other circulation theorems, the helicity-conservation theorem, and Cauchy’s formula for the barotropic vorticity checks the formulas further.

The formulas are suitable for generating diagnostic fields of barotropic and baroclinic vorticity in models if some simple auxiliary equations are added to the model and integrated stably forward in time alongside the model equations.

Corresponding author address: Dr. Robert Davies-Jones, Doggetts Farm, New Street, Stradbroke, Eye, Suffolk IP21 5JG, United Kingdom. E-mail: bobdj1066@yahoo.com
Save
  • Adlerman, E. J., K. K. Droegemeier, and R. P. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, doi:10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aris, R., 1962: Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Prentice Hall, 286 pp.

  • Borisenko, A. I., and I. E. Tarapov, 1979: Vector and Tensor Analysis with Applications. Dover, 257 pp.

  • Bretherton, F. P., 1970: A note on Hamilton’s principle for perfect fluids. J. Fluid Mech., 44, 1931, doi:10.1017/S0022112070001660.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, doi:10.1175/JAS-D-13-0123.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2000: A Lagrangian model for baroclinic genesis of mesoscale vortices. Part I: Theory. J. Atmos. Sci., 57, 715736, doi:10.1175/1520-0469(2000)057<0715:ALMFBG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2006: Integrals of the vorticity equation. Part I: General three- and two-dimensional flows. J. Atmos. Sci., 63, 598610, doi:10.1175/JAS3646.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 24692497, doi:10.1175/2007JAS2516.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274291, doi:10.1016/j.atmosres.2014.04.007.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards,Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114, doi:10.1029/GM079p0105.

  • Davies-Jones, R. P., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms,Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221, doi:10.1175/0065-9401-28.50.167.

  • Dellar, P. J., 2011: Variations on a beta-plane: Derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech., 674, 174195, doi:10.1017/S0022112010006464.

    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., 1976: The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion. Dover, 579 pp.

  • Eckart, C., 1960: Variation principles of hydrodynamics. Phys. Fluids, 3, 421427, doi:10.1063/1.1706053.

  • Epifanio, C. C., and D. R. Durran, 2002: Lee-vortex formation in free-slip stratified flow over ridges. Part II: Mechanism of vorticity and PV production in nonlinear viscous wakes. J. Atmos. Sci., 59, 11661181, doi:10.1175/1520-0469(2002)059<1166:LVFIFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feynman, R. P., R. B. Leighton, and M. Sands, 1964: The principle of least action. Mainly Electromagnetism and Matter, Vol. II, The Feynman Lectures on Physics, Addison–Wesley, 19-1–19-14.

  • Grimshaw, R. H. J., 1975: A note on the β-plane approximation. Tellus, 27A, 351357, doi:10.1111/j.2153-3490.1975.tb01685.x.

  • Hildebrand, F. B., 1965: Methods of Applied Mathematics. 2nd ed., Prentice-Hall, 362 pp.

  • Hunt, J. C. R., and F. Hussain, 1991: A note on velocity, vorticity and helicity of fluid elements. J. Fluid Mech., 229, 569587, doi:10.1017/S0022112091003178.

    • Search Google Scholar
    • Export Citation
  • Kreyszig, E., 1972: Advanced Engineering Mathematics. 3rd ed. Wiley, 866 pp.

  • Lackmann, G., 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting. Amer. Meteor. Soc., 345 pp.

  • Lamb, H., 1932: Hydrodynamics. Dover, 738 pp.

  • Margenau, H., and G. M. Murphy, 1956: The Mathematics of Physics and Chemistry. 2nd ed. Van Nostrand, 604 pp.

  • Markowski, P., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, doi:10.1175/MWR-D-11-00337.1.

    • Search Google Scholar
    • Export Citation
  • Mobbs, S. D., 1981: Some vorticity theorems and conservation laws for non-barotropic fluids. J. Fluid Mech., 108, 475483, doi:10.1017/S002211208100222X.

    • Search Google Scholar
    • Export Citation
  • Moffatt, H. K., and A. Tsinober, 1992: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech., 24, 281312, doi:10.1146/annurev.fl.24.010192.001433.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, doi:10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1988: Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech., 20, 225256, doi:10.1146/annurev.fl.20.010188.001301.

  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

  • Sasaki, Y., 2014: Entropic balance theory and variational field Lagrangian formalism: Tornadogenesis. J. Atmos. Sci., 71, 21042113, doi:10.1175/JAS-D-13-0211.1.

    • Search Google Scholar
    • Export Citation
  • Serrin, J., 1959: Mathematical principles of classical fluid mechanics. Fluid Dynamics I, C. Truesdell, Ed., Vol. VIII/1, Handbuch der Physik, Springer-Verlag, 125–263, doi:10.1007/978-3-642-45914-6_2.

  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Springer, C. E., 1962: Tensor and Vector Analysis: with Applications to Differential Geometry. Ronald Press, 242 pp.

  • Truesdell, C., 1954: The Kinematics of Vorticity. Indiana University Press, 232 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 437 168 4
PDF Downloads 244 75 9