Regime Transitions of Cross-Equatorial Hadley Circulations with Zonally Asymmetric Thermal Forcings

Jun Zhai Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Jun Zhai in
Current site
Google Scholar
PubMed
Close
and
William Boos Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by William Boos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observed nonlinearities in the seasonal evolution of monsoons have been previously explained using theories for Hadley circulations driven by zonally symmetric thermal forcings, even though monsoonal forcings deviate strongly from the assumption of zonal symmetry. Here, an idealized model of a dry, three-dimensional atmosphere is used to compare the response to zonally symmetric and asymmetric off-equatorial thermal forcings. For symmetric forcings, the zonal-mean, cross-equatorial mass flux increases more rapidly with the amplitude of the forcing once the forcing becomes strong enough to reduce the upper-tropospheric absolute vorticity to near zero, consistent with previous studies of the transition to angular momentum–conserving flow. For zonally asymmetric forcings, the zonal-mean cross-equatorial flow exhibits a similar dependence on forcing strength and a similar reduction of the zonal-mean upper-level vorticity, but asymmetric forcings also produce strong zonal overturnings with subsidence west of the heating, as in the well-known linear response to off-equatorial heatings. The mass flux in these zonal overturnings increases linearly with forcing strength until its rate of increase tapers off for the strongest forcings; the total upward mass flux (i.e., the zonal-mean plus zonally asymmetric components) increases linearly with the strength of zonally asymmetric forcings and exhibits no abrupt or nonlinear dependence on forcing amplitude. These results indicate the importance of considering the zonally asymmetric part of the divergent response to off-equatorial forcings and suggest that theories based on zonally symmetric forcings need further examination before they can be assumed to describe observed monsoons.

Corresponding author address: Jun Zhai, Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511. E-mail: jun.zhai@yale.edu

Abstract

Observed nonlinearities in the seasonal evolution of monsoons have been previously explained using theories for Hadley circulations driven by zonally symmetric thermal forcings, even though monsoonal forcings deviate strongly from the assumption of zonal symmetry. Here, an idealized model of a dry, three-dimensional atmosphere is used to compare the response to zonally symmetric and asymmetric off-equatorial thermal forcings. For symmetric forcings, the zonal-mean, cross-equatorial mass flux increases more rapidly with the amplitude of the forcing once the forcing becomes strong enough to reduce the upper-tropospheric absolute vorticity to near zero, consistent with previous studies of the transition to angular momentum–conserving flow. For zonally asymmetric forcings, the zonal-mean cross-equatorial flow exhibits a similar dependence on forcing strength and a similar reduction of the zonal-mean upper-level vorticity, but asymmetric forcings also produce strong zonal overturnings with subsidence west of the heating, as in the well-known linear response to off-equatorial heatings. The mass flux in these zonal overturnings increases linearly with forcing strength until its rate of increase tapers off for the strongest forcings; the total upward mass flux (i.e., the zonal-mean plus zonally asymmetric components) increases linearly with the strength of zonally asymmetric forcings and exhibits no abrupt or nonlinear dependence on forcing amplitude. These results indicate the importance of considering the zonally asymmetric part of the divergent response to off-equatorial forcings and suggest that theories based on zonally symmetric forcings need further examination before they can be assumed to describe observed monsoons.

Corresponding author address: Jun Zhai, Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511. E-mail: jun.zhai@yale.edu
Save
  • Boos, W. R., and K. A. Emanuel, 2008a: Wind–evaporation feedback and abrupt seasonal transitions of weak, axisymmetric Hadley circulations. J. Atmos. Sci., 65, 2194–2214, doi:10.1175/2007JAS2608.1.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and K. A. Emanuel, 2008b: Wind–evaporation feedback and the axisymmetric transition to angular momentum-conserving Hadley flow. J. Atmos. Sci., 65, 3758–3778, doi:10.1175/2008JAS2791.1.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and K. A. Emanuel, 2009: Annual intensification of the Somali jet in a quasi-equilibrium framework: Observational composites. Quart. J. Roy. Meteor. Soc., 135, 319–335, doi:10.1002/qj.388.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and T. A. Shaw, 2013: The effect of moist convection on the tropospheric response to tropical and subtropical zonally asymmetric torques. J. Atmos. Sci., 70, 4089–4111, doi:10.1175/JAS-D-13-041.1.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515–519, doi:10.1038/ngeo248.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 1522–1527, doi:10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2010: ERA-Interim monthly dataset, 1979 to 2010. European Centre for Medium-Range Weather Forecasts, accessed 10 October 2013. [Available online at http://apps.ecmwf.int/datasets/data/interim-full-mnth/.]

  • Emanuel, K. A., 1995: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 1529–1534, doi:10.1175/1520-0469(1995)052<1529:OTDCIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: Interhemispheric transport of air in the lower troposphere over the western Indian Ocean. Quart. J. Roy. Meteor. Soc., 95, 400–403, doi:10.1002/qj.49709540412.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., and M. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–841, doi:10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I., and A. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515–533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I., and M. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825–1830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and M. J. Rodwell, 1995: A model of the Asian summer monsoon. Part I: The global scale. J. Atmos. Sci., 52, 1329–1340, doi:10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, C., and R. Plumb, 2000: Nonaxisymmetric thermally driven circulations and upper-tropospheric monsoon dynamics. J. Atmos. Sci., 57, 1255–1276, doi:10.1175/1520-0469(2000)057<1255:NTDCAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, P., and B. Mapes, 2011: Zonal mean wind, the Indian monsoon, and July drying in the western Atlantic subtropics. J. Geophys. Res., 116, D00Q07, doi:10.1029/2010JD015405.

    • Search Google Scholar
    • Export Citation
  • Kelly, P., and B. Mapes, 2013: Asian monsoon forcing of subtropical easterlies in the Community Atmosphere Model: Summer climate implications for the western Atlantic. J. Climate, 26, 2741–2755, doi:10.1175/JCLI-D-12-00339.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., P. Ardanuy, Y. Ramanathan, and R. Pasch, 1981: On the onset vortex of the summer monsoon. Mon. Wea. Rev., 109, 344–363, doi:10.1175/1520-0493(1981)109<0344:OTOVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R., and A. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 2416–2427, doi:10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., L.-X. Chen, and A. Xie, 1986: Relationship among seasonal cycles, low-frequency oscillations, and transient disturbances as revealed from outgoing longwave radiation data. Mon. Wea. Rev., 114, 1456–1465, doi:10.1175/1520-0493(1986)114<1456:RASCLF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Pauluis, O., 2004: Boundary layer dynamics and cross-equatorial Hadley circulation. J. Atmos. Sci., 61, 1161–1173, doi:10.1175/1520-0469(2004)061<1161:BLDACH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Plumb, R., 2007: Dynamical constraints on monsoon circulations. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 252–266 pp.

  • Plumb, R., and A. Hou, 1992: The response of a zonally symmetric atmosphere to subtropical thermal forcing: Threshold behavior. J. Atmos. Sci., 49, 1790–1799, doi:10.1175/1520-0469(1992)049<1790:TROAZS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Popovic, J., and R. Plumb, 2001: Eddy shedding from the upper-tropospheric Asian monsoon anticyclone. J. Atmos. Sci., 58, 93–104, doi:10.1175/1520-0469(2001)058<0093:ESFTUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007a: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 1417–1430, doi:10.1175/JAS3916.1.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007b: Monsoon dynamics with interactive forcing. Part II: Impact of eddies and asymmetric geometries. J. Atmos. Sci., 64, 1431–1442, doi:10.1175/JAS3917.1.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1983: Lectures in geophysical fluid dynamics. Fluid Dynamics in Astrophysics and Geophysics, N. R. Lebovitz, Ed., Lectures in Applied Mathematics, Vol. 20, American Mathematical Society, 3–58.

    • Search Google Scholar
    • Export Citation
  • Schneider, E., 1987: A simplified model of the modified Hadley circulation. J. Atmos. Sci., 44, 3311–3328, doi:10.1175/1520-0469(1987)044<3311:ASMOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655–688, doi:10.1146/annurev.earth.34.031405.125144.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915–934, doi:10.1175/2007JAS2415.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. O’Gorman, and X. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2014: On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci., 71, 1724–1746, doi:10.1175/JAS-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and R. Plumb, 1999: Quantitative diagnostics of mixing in a shallow water model of the stratosphere. J. Atmos. Sci., 56, 2811–2829, doi:10.1175/1520-0469(1999)056<2811:QDOMIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and C. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 4378–4392, doi:10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2005: Response of idealized Hadley circulations to seasonally varying heating. Geophys. Res. Lett., 32, L06813, doi:10.1029/2004GL022304.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3333–3360, doi:10.1175/JAS3821.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100, 518–541, doi:10.1175/1520-0493(1972)100<0518:ROTTAT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and J. Fasullo, 2003: Monsoon: Dynamical theory. Encyclopedia of Atmospheric Sciences, J. A. Curry and J. A. Pyle, Eds., Elsevier Science Ltd., 1370–1386, doi:10.1016/B0-12-227090-8/00236-0.

  • Yin, M. T., 1949: Synoptic–aerologic study of the onset of the summer monsoon over India and Burma. J. Atmos. Sci., 6, 393–400, doi:10.1175/1520-0469(1949)006<0393:SASOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., and E. A. Eltahir, 1998: The role of vegetation in the dynamics of West African monsoons. J. Climate, 11, 2078–2096, doi:10.1175/1520-0442-11.8.2078.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 90 5
PDF Downloads 181 45 6