Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales

Marcin J. Kurowski Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Marcin J. Kurowski in
Current site
Google Scholar
PubMed
Close
,
Wojciech W. Grabowski National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
, and
Piotr K. Smolarkiewicz European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Piotr K. Smolarkiewicz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Moist anelastic and compressible numerical solutions to the planetary baroclinic instability and climate benchmarks are compared. The solutions are obtained by applying a consistent numerical framework for discrete integrations of the various nonhydrostatic flow equations. Moist extension of the baroclinic instability benchmark is formulated as an analog of the dry case. Flow patterns, surface vertical vorticity and pressure, total kinetic energy, power spectra, and total amount of condensed water are analyzed. The climate benchmark extends the baroclinic instability study by addressing long-term statistics of an idealized planetary equilibrium and associated meridional transports. Short-term deterministic anelastic and compressible solutions differ significantly. In particular, anelastic baroclinic eddies propagate faster and develop slower owing to, respectively, modified dispersion relation and abbreviated baroclinic vorticity production. These eddies also carry less kinetic energy, and the onset of their rapid growth occurs later than for the compressible solutions. The observed differences between the two solutions are sensitive to initial conditions as they diminish for large-amplitude excitations of the instability. In particular, on the climatic time scales, the anelastic and compressible solutions evince similar zonally averaged flow patterns with the matching meridional transports of entropy, momentum, and moisture.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Marcin J. Kurowski, Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S: 233-300, Pasadena, CA 91109. E-mail: marcin.j.kurowski@jpl.nasa.gov

Abstract

Moist anelastic and compressible numerical solutions to the planetary baroclinic instability and climate benchmarks are compared. The solutions are obtained by applying a consistent numerical framework for discrete integrations of the various nonhydrostatic flow equations. Moist extension of the baroclinic instability benchmark is formulated as an analog of the dry case. Flow patterns, surface vertical vorticity and pressure, total kinetic energy, power spectra, and total amount of condensed water are analyzed. The climate benchmark extends the baroclinic instability study by addressing long-term statistics of an idealized planetary equilibrium and associated meridional transports. Short-term deterministic anelastic and compressible solutions differ significantly. In particular, anelastic baroclinic eddies propagate faster and develop slower owing to, respectively, modified dispersion relation and abbreviated baroclinic vorticity production. These eddies also carry less kinetic energy, and the onset of their rapid growth occurs later than for the compressible solutions. The observed differences between the two solutions are sensitive to initial conditions as they diminish for large-amplitude excitations of the instability. In particular, on the climatic time scales, the anelastic and compressible solutions evince similar zonally averaged flow patterns with the matching meridional transports of entropy, momentum, and moisture.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Marcin J. Kurowski, Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S: 233-300, Pasadena, CA 91109. E-mail: marcin.j.kurowski@jpl.nasa.gov
Save
  • Almgren, A. S., 2000: A new look at the pseudo-incompressible solution to Lamb’s problem of hydrostatic adjustment. J. Atmos. Sci., 57, 995–998, doi:10.1175/1520-0469(2000)057<0995:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1975: General circulation of the atmosphere. Rev. Geophys., 13, 668–680, doi:10.1029/RG013i003p00668.

  • Arakawa, A., and C. Konor, 2009: Unification of the anelastic and quasi-hydrostatic systems of equations. Mon. Wea. Rev., 137, 710–726, doi:10.1175/2008MWR2520.1.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., S. Wang, and L. Polvani, 2013: Midlatitude storms in a moister world: Lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41, 787–802, doi:10.1007/s00382-012-1472-3.

    • Search Google Scholar
    • Export Citation
  • Cao, Z., and H.-R. Cho, 1995: Generation of moist potential vorticity in extratropical cyclones. J. Atmos. Sci., 52, 3263–3282, doi:10.1175/1520-0469(1995)052<3263:GOMPVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cullen, M. J., D. Salmond, and P. K. Smolarkiewicz, 2000: Key numerical issues for the future development of the ECMWF model. Workshop on developments of the ECMWF model, Reading, United Kingdom, ECMWF. [Available online at http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-010-248.]

  • Davies, T., A. Staniforth, N. Wood, and J. Thuburn, 2003: Validity of anelastic and other equation sets as inferred from normal-mode analysis. Quart. J. Roy. Meteor. Soc., 129, 2761–2775, doi:10.1256/qj.02.1951.

    • Search Google Scholar
    • Export Citation
  • Dolaptchiev, S. I., and R. Klein, 2009: Planetary geostrophic equations for the atmosphere with evolution of the barotropic flow. Dyn. Atmos. Oceans, 46, 46–61, doi:10.1016/j.dynatmoce.2008.07.001.

    • Search Google Scholar
    • Export Citation
  • Dolaptchiev, S. I., and R. Klein, 2013: A multiscale model for the planetary and synoptic motions in the atmosphere. J. Atmos. Sci., 70, 2963–2981, doi:10.1175/JAS-D-12-0272.1.

    • Search Google Scholar
    • Export Citation
  • Domaradzki, J. A., Z. Xiao, and P. K. Smolarkiewicz, 2003: Effective eddy viscosities in implicit large eddy simulations of turbulent flows. Phys. Fluids, 15, 3890–3893, doi:10.1063/1.1624610.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., J. D. Doyle, T. P. Lane, R. D. Sharman, and P. K. Smolarkiewicz, 2005: On physical realizability and uncertainty of numerical solutions. Atmos. Sci. Lett., 6, 118–122, doi:10.1002/asl.100.

    • Search Google Scholar
    • Export Citation
  • Duarte, M., A. S. Almgren, and J. B. Bell, 2015: A low Mach number model for moist atmospheric flows. J. Atmos. Sci., 72, 1605–1620, doi:10.1175/JAS-D-14-0248.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 1453–1461, doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 2002: A multiscale anelastic model for meteorological research. Mon. Wea. Rev., 130, 939–956, doi:10.1175/1520-0493(2002)130<0939:AMAMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., L. E. Branscome, and D. A. Stewart, 1992: Life cycles of moist baroclinic eddies. J. Atmos. Sci., 49, 306–319, doi:10.1175/1520-0469(1992)049<0306:LCOMBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takhashi, and Y. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, doi:10.1029/2008JD009785.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of the atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825–1830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology. Academic Press, 391 pp.

  • Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 2943–2975, doi:10.1256/qj.06.12.

    • Search Google Scholar
    • Export Citation
  • Klein, R., U. Achatz, D. Bresch, O. M. Knio, and P. K. Smolarkiewicz, 2010: Regime of validity of soundproof atmospheric flow models. J. Atmos. Sci., 67, 3226–3237, doi:10.1175/2010JAS3490.1.

    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., W. W. Grabowski, and P. K. Smolarkiewicz, 2013: Toward multiscale simulation of moist flows with soundproof equations. J. Atmos. Sci., 70, 3995–4011, doi:10.1175/JAS-D-13-024.1.

    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., W. W. Grabowski, and P. K. Smolarkiewicz, 2014: Anelastic and compressible simulation of moist deep convection. J. Atmos. Sci., 71, 3767–3787, doi:10.1175/JAS-D-14-0017.1.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259–288, doi:10.1017/S0022112099004851.

    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., 1990: On the anelastic approximation for deep convection. J. Atmos. Sci., 47, 1794–1798, doi:10.1175/1520-0469(1990)047<1794:OTAAFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39, 2192–2210, doi:10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liska, R., and B. Wendroff, 1998: Composite schemes for conservation laws. SIAM J. Numer. Anal., 35, 2250–2271, doi:10.1137/S0036142996310976.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157–167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950–960, doi:10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Neill, W. P., and R. Klein, 2014: A moist pseudo-incompressible model. Atmos. Res., 142, 133–141, doi:10.1016/j.atmosres.2013.08.004.

    • Search Google Scholar
    • Export Citation
  • Park, S.-H., W. Skamarock, J. Klemp, L. Fowler, and M. Duda, 2013: Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Mon. Wea. Rev., 141, 3116–3129, doi:10.1175/MWR-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Pavan, V., N. Hall, P. Valdes, and N. Blackburn, 1999: The importance of moisture distribution for the growth and energetics of baroclinic eddies. Ann. Geophys., 17, 242–256, doi:10.1007/s00585-999-0242-y.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1984: Physics of climate. Rev. Mod. Phys., 56, 365–429, doi:10.1103/RevModPhys.56.365.

  • Polvani, L. M., R. K. Scott, and S. J. Thomas, 2004: Numerically converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon. Wea. Rev., 132, 2539–2552, doi:10.1175/MWR2788.1.

    • Search Google Scholar
    • Export Citation
  • Prusa, J. M., and W. J. Gutowski, 2010: Multi-scale features of baroclinic waves in sound-proof, global simulations with EULAG. Proc. Fifth European Conf. on Computational Fluid Dynamics (ECCOMAS CFD 2010), Lisbon, Portugal, European Community on Computational Methods in Applied Sciences, 1453. [Available online at http://congress.cimne.com/eccomas/cfd2010/papers/01453.pdf.]

  • Reed, R. J., G. Grell, and Y.-H. Kuo, 1993: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121, 1595–1612, doi:10.1175/1520-0493(1993)121<1595:TEISPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer-Rolffs, U., and E. Becker, 2013: Horizontal momentum diffusion in GCMs using the dynamic Smagorinsky model. Mon. Wea. Rev., 141, 887–899, doi:10.1175/MWR-D-12-00101.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414–432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 4369–4381, doi:10.1175/JAS-D-14-0114.1.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 2011: Modeling atmospheric circulations with soundproof equations. Proc. ECMWF Workshop on Nonhydrostatic Modelling, Reading, UK, ECMWF, 15 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2010/Nonhydrostatic_modelling/Smolarkiewicz.pdf.]

  • Smolarkiewicz, P. K., and A. Dörnbrack, 2008: Conservative integrals of adiabatic Durran’s equations. Int. J. Numer. Methods Fluids, 56, 1513–1519, doi:10.1002/fld.1601.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., L. G. Margolin, and A. Wyszogrodzki, 2001: A class of nonhydrostatic global models. J. Atmos. Sci., 58, 349–364, doi:10.1175/1520-0469(2001)058<0349:ACONGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., C. Kühnlein, and N. Wedi, 2014: A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics. J. Comput. Phys., 263, 185–205, doi:10.1016/j.jcp.2014.01.031.

    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., T. Melvin, C. Jablonowski, and A. Staniforth, 2014: A proposed baroclinic wave test case for deep- and shallow-atmosphere dynamical cores. Quart. J. Roy. Meteor. Soc., 140, 1590–1602, doi:10.1002/qj.2241.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 1242–1256, doi:10.1175/JAS-D-11-0347.1.

    • Search Google Scholar
    • Export Citation
  • Wedi, N. P., and P. K. Smolarkiewicz, 2006: Direct numerical simulation of the Plumb–McEwan laboratory analog of the QBO. J. Atmos. Sci., 63, 3226–3252, doi:10.1175/JAS3815.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 200 83 6
PDF Downloads 139 55 4