A Parameterization of Sticking Efficiency for Collisions of Snow and Graupel with Ice Crystals: Theory and Comparison with Observations

Vaughan T. J. Phillips Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Search for other papers by Vaughan T. J. Phillips in
Current site
Google Scholar
PubMed
Close
,
Marco Formenton Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Search for other papers by Marco Formenton in
Current site
Google Scholar
PubMed
Close
,
Aaron Bansemer Earth System Laboratory, Nation Center for Atmospheric Research,+ Boulder, Colorado

Search for other papers by Aaron Bansemer in
Current site
Google Scholar
PubMed
Close
,
Innocent Kudzotsa Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Search for other papers by Innocent Kudzotsa in
Current site
Google Scholar
PubMed
Close
, and
Barry Lienert Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Barry Lienert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new parameterization of sticking efficiency for aggregation of ice crystals onto snow and graupel is presented. This parameter plays a crucial role for the formation of ice precipitation and for electrification processes. The parameterization is intended to be used in atmospheric models simulating the aggregation of ice particles in glaciated clouds. It should improve the ability to forecast snow.

Based on experimental results and general considerations of collision processes, dependencies of the sticking efficiency on temperature, surface area, and collision kinetic energy of impacting particles are derived. The parameters have been estimated from some laboratory observations by simulating the experiments and minimizing the squares of the errors of the prediction of observed quantities. The predictions from the new scheme are compared with other available laboratory and field observations. The comparisons show that the parameterization is able to reproduce the thermal behavior of sticking efficiency, observed in published laboratory studies, with a peak around −15°C corresponding to dendritic vapor growth of ice.

Finally, a new theory of sticking efficiency is proposed. It explains the empirically derived parameterization in terms of a probability distribution of the work that would be required to separate two contacting particles colliding in all possible ways among many otherwise identical collisions of the same pair with a given initial collision kinetic energy. For each collision, if this work done would exceed the initial collision kinetic energy, then there is no separation after impact. The probability of that occurring equals the sticking efficiency.

School of Ocean and Earth Science and Technology Publication Number 9216 and Hawaii Institute of Geophysics and Planetology Publication Number 2173.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Deceased.

Corresponding author address: Vaughan Phillips, Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, S-223 62 Lund, Sweden. E-mail: vaughan.phillips@nateko.lu.se

Abstract

A new parameterization of sticking efficiency for aggregation of ice crystals onto snow and graupel is presented. This parameter plays a crucial role for the formation of ice precipitation and for electrification processes. The parameterization is intended to be used in atmospheric models simulating the aggregation of ice particles in glaciated clouds. It should improve the ability to forecast snow.

Based on experimental results and general considerations of collision processes, dependencies of the sticking efficiency on temperature, surface area, and collision kinetic energy of impacting particles are derived. The parameters have been estimated from some laboratory observations by simulating the experiments and minimizing the squares of the errors of the prediction of observed quantities. The predictions from the new scheme are compared with other available laboratory and field observations. The comparisons show that the parameterization is able to reproduce the thermal behavior of sticking efficiency, observed in published laboratory studies, with a peak around −15°C corresponding to dendritic vapor growth of ice.

Finally, a new theory of sticking efficiency is proposed. It explains the empirically derived parameterization in terms of a probability distribution of the work that would be required to separate two contacting particles colliding in all possible ways among many otherwise identical collisions of the same pair with a given initial collision kinetic energy. For each collision, if this work done would exceed the initial collision kinetic energy, then there is no separation after impact. The probability of that occurring equals the sticking efficiency.

School of Ocean and Earth Science and Technology Publication Number 9216 and Hawaii Institute of Geophysics and Planetology Publication Number 2173.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Deceased.

Corresponding author address: Vaughan Phillips, Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, S-223 62 Lund, Sweden. E-mail: vaughan.phillips@nateko.lu.se
Save
  • Bailey, M. P., and H. Hallet, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Baker, B., M. Baker, E. R. Jayaratne, J. Latham, and C. Saunders, 1987: The influence of diffusional growth rates on the charge transfer accompanying rebounding collisions between ice crystals and hailstone. Quart. J. Roy. Meteor. Soc., 113, 11931219, doi:10.1002/qj.49711347807.

    • Search Google Scholar
    • Export Citation
  • Barnes, G., 1958: Study of collisions. Part. I. A survey of the periodical literature. Amer. J. Phys., 26, 5, doi:10.1119/1.1934583.

  • Böhm, J. P., 1992a: A general hydrodynamic theory for mixed-phase microphysics: Part I. Drag and fall speed of hydrometeors. Atmos. Res., 27, 253274, doi:10.1016/0169-8095(92)90035-9.

    • Search Google Scholar
    • Export Citation
  • Böhm, J. P., 1992b: A general hydrodynamic theory for mixed-phase microphysics: Part II. Collision kernels for coalescence. Atmos. Res., 27, 275290, doi:10.1016/0169-8095(92)90036-A.

    • Search Google Scholar
    • Export Citation
  • Böhm, J. P., 1992c: A general hydrodynamic theory for mixed-phase microphysics: Part III. Riming and aggregation. Atmos. Res., 28, 103123, doi:10.1016/0169-8095(92)90023-4.

    • Search Google Scholar
    • Export Citation
  • Böhm, J. P., 1994: Theoretical collision efficiencies for riming and aerosol impaction. Atmos. Res., 32, 171187, doi:10.1016/0169-8095(94)90058-2.

    • Search Google Scholar
    • Export Citation
  • Böhm, J. P., 1999: Revision and clarification of “A general hydrodynamic theory for mixed-phase microphysics.” Atmos. Res., 52, 167176, doi:10.1016/S0169-8095(99)00033-2.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284294, doi:10.1175/1520-0469(2000)057≪0284:AFMFTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, W. R., I. Etsion, and D. B. Bogy, 1987: An elastic-plastic model for the contact of rough surfaces. ASME J. Tribol., 109, 257263, doi:10.1115/1.3261348.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., C. P. R. Saunders, M. W. Gallagher, K. N. Bower, M. J. Flynn, T. W. Choularton, J. Whiteway, and R. P. Lawson, 2005: Aircraft observations of the influence of electric fields on the aggregation of ice crystals. Quart. J. Roy. Meteor. Soc., 131, 16951712, doi:10.1256/qj.03.217.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., C. Emersic, and P. R. Field, 2012: A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 20552076, doi:10.5194/acp-12-2055-2012.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 16581680, doi:10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multi-phase four-class ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544560, doi:10.1175/1520-0469(2003)060<0544:AASOIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greenwood, J. A., and J. B. P. Williamson, 1966: Contact of nominally flat surfaces. Proc. Roy. Soc. London,295A, 300–319, doi:10.1098/rspa.1966.0242.

  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hosler, C. L., and R. E. Hallgren, 1960: The aggregation of small ice crystals. Discuss. Faraday Soc., 30, 200206, doi:10.1039/df9603000200.

    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609630, doi:10.1002/qj.49710946111.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46, 31083121, doi:10.1175/1520-0469(1989)046<3108:AOICIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., K. Kikuchi, Y. Asuma, Y. Inoue, and N. Sato, 2000: Aggregation of needle snow crystals. Atmos. Res., 55, 131138, doi:10.1016/S0169-8095(00)00061-2.

    • Search Google Scholar
    • Export Citation
  • Keith, W. D., and C. P. R. Saunders, 1989: The collection efficiency of a cylindrical target for ice crystals. Atmos. Res., 23, 8395, doi:10.1016/0169-8095(89)90059-8.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the Eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77110, doi:10.1016/S0169-8095(96)00005-1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, doi:10.1175/JAS-3350.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Kudzotsa, I., 2014: Mechanisms of aerosol indirect effects on glaciated clouds simulated numerically. Ph.D. dissertation, University of Leeds, 220 pp.

  • Latham, J., and C. P. R. Saunders, 1970: Experimental measurements of the collection efficiencies of ice crystals in electric fields. Quart. J. Roy. Meteor. Soc., 96, 255265, doi:10.1002/qj.49709640808.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. You, W. Yang, and F. Liu, 1995: On the size distribution of cloud droplets. Atmos. Res., 35, 201216, doi:10.1016/0169-8095(94)00019-A.

    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli Jr., 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706, doi:10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982: Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiency and fragment size distribution in breakup. J. Atmos. Sci., 39, 15911606, doi:10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Macklin, W. C., 1961: Accretion in mixed clouds. Quart. J. Roy. Meteor. Soc., 87, 413424, doi:10.1002/qj.49708737312.

  • Mitchell, D. L., 1988: Evolution of snow-size spectra in cyclonic storms. Part I: Snow growth by vapor deposition and aggregation. J. Atmos. Sci., 45, 34313451, doi:10.1175/1520-0469(1988)045<3431:EOSSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part I: Microphysics. J. Atmos. Sci., 55, 910919, doi:10.1175/1520-0469(1994)051<0797:AMPTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., A. Huggins, and V. Grubisic, 2006: A new snow growth model with application to radar precipitation estimates. Atmos. Res., 82, 218, doi:10.1016/j.atmosres.2005.12.004.

    • Search Google Scholar
    • Export Citation
  • Musil, D. J., 1970: Computer modeling of hailstone growth in feeder clouds. J. Atmos. Sci., 27, 474482, doi:10.1175/1520-0469(1970)027<0474:CMOHGI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., 1998: Sublimation of ice crystals. J. Atmos. Sci., 55, 910–919, doi:10.1175/1520-0469(1998)055<0910:SOIC>2.0.CO;2.

  • Phillips, V. T. J., T. W. Choularton, A. J. Illingworth, R. J. Hogan, and P. R. Field, 2003: Simulations of the glaciation of a frontal mixed-phase cloud with the Explicit Microphysics Model. Quart. J. Roy. Meteor. Soc., 129, 13511371, doi:10.1256/qj.02.100.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2005: Anvil glaciation in a deep cumulus updraft over Florida simulated with the Explicit Microphysics Model. I: Impact of various nucleation processes. Quart. J. Roy. Meteor. Soc., 131, 20192046, doi:10.1256/qj.04.85.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., L. J. Donner, and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64, 738761, doi:10.1175/JAS3869.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2009: Potential impacts from biological aerosols on ensembles of continental clouds simulated numerically. Biogeosciences, 6, 9871014, doi:10.5194/bg-6-987-2009.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Khain, N. Benmoshe, and E. Ilotoviz, 2014: Theory of time-dependent freezing. Part I: Description of scheme for wet growth of hail. J. Atmos. Sci., 71, 45274557, doi:10.1175/JAS-D-13-0375.1.

    • Search Google Scholar
    • Export Citation
  • Polycarpou, A. A., and I. Etsion, 1999: Analytical approximations in modeling contacting rough surfaces. ASME J. Tribol, 121, 234239, doi:10.1115/1.2833926.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Springer, 954 pp.

  • Rango, A., J. Foster, E. G. Josberger, E. F. Erbe, C. Pooley, and W. P. Wergin, 2003: Rime and graupel: Description and characterization as revealed by low-temperature scanning electron microscopy. Scanning, 25, 121131, doi:10.1002/sca.4950250304.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1985: A generalized form for impact velocities used to determine graupel accretional densities. J. Atmos. Sci., 42, 22752279, doi:10.1175/1520-0469(1985)042≪2275:AGFFIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, S. E., M. Brook, and M. F. Gourley, 1957: Thunderstorm charge separation. J. Meteor., 14, 426436, doi:10.1175/1520-0469(1957)014<0426:TCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. International Series in Natural Philosophy, Butterworth Heinemann, 160 pp.

  • Saunders, C. P. R., and N. M. A. Wahab, 1975: The influence of electric fields on the aggregation of ice crystals. J. Meteor. Soc. Japan, 53, 121126.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., Y. Nagao, and Y. Kushiyama, 1995: Possible high ice particle production during graupel–graupel collisions. J. Atmos. Sci., 52, 45234527, doi:10.1175/1520-0469(1995)052<4523:PHIPPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wall, S., W. John, H. Wang, and S. L. Goren, 1990: Measurements of kinetic energy loss for particles impacting surfaces. Aerosol Sci. Technol., 12, 926946, doi:10.1080/02786829008959404.

    • Search Google Scholar
    • Export Citation
  • Yu, N., and A. A. Polycarpou, 2004: Combining and contacting of two rough surfaces with asymmetric distribution of asperity heights. ASME J. Tribol, 126, 225232, doi:10.1115/1.1614822.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 992 352 62
PDF Downloads 744 230 41