Atmospheric Wake of Madeira: First Aerial Observations and Numerical Simulations

Vanda Grubišić National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Vanda Grubišić in
Current site
Google Scholar
PubMed
Close
,
Johannes Sachsperger Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria

Search for other papers by Johannes Sachsperger in
Current site
Google Scholar
PubMed
Close
, and
Rui M. A. Caldeira Interdisciplinary Center of Marine and Environmental Research (CIIMAR), and Center for Mathematical Sciences (CCM), University of Madeira, Funchal, Madeira, Portugal

Search for other papers by Rui M. A. Caldeira in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The island of Madeira is well known for giving rise to atmospheric wakes. Strong and unsteady atmospheric wakes, resembling a von Kármán vortex street, are frequently observed in satellite images leeward of Madeira, especially during summer months, when conditions favoring the formation of atmospheric wakes occur frequently under the influence of the Azores high.

Reported here is the analysis of the first airborne measurements of Madeira’s wake collected during the 2010 Island-induced Wake (I-WAKE) campaign. High-resolution in situ and remote sensing data were collected in the I-WAKE by a research aircraft. The measurements reveal distinctive wake signatures, including strong lateral wind shear zones and warm and dry eddies downwind of the island. A strong anticorrelation of the horizontal wind speed and sea surface temperature (SST) was found within the wake.

High-resolution numerical simulations with the Weather Research and Forecasting (WRF) Model were used to study the dynamics of the wake generation and its temporal evolution. The comparison of the model results and observations reveals a remarkable fidelity of the simulated wake features within the marine boundary layer (MBL). Strong potential vorticity (PV) anomalies were found in the simulated MBL wake, emanating from the flanks of the island. The response of the wake formation within the MBL to surface friction and enhanced thermal forcing is explored through the model sensitivity analyses.

Denotes Open Access content.

Additional affiliation: Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Vanda Grubišić, EOL, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: grubisic@ucar.edu

Abstract

The island of Madeira is well known for giving rise to atmospheric wakes. Strong and unsteady atmospheric wakes, resembling a von Kármán vortex street, are frequently observed in satellite images leeward of Madeira, especially during summer months, when conditions favoring the formation of atmospheric wakes occur frequently under the influence of the Azores high.

Reported here is the analysis of the first airborne measurements of Madeira’s wake collected during the 2010 Island-induced Wake (I-WAKE) campaign. High-resolution in situ and remote sensing data were collected in the I-WAKE by a research aircraft. The measurements reveal distinctive wake signatures, including strong lateral wind shear zones and warm and dry eddies downwind of the island. A strong anticorrelation of the horizontal wind speed and sea surface temperature (SST) was found within the wake.

High-resolution numerical simulations with the Weather Research and Forecasting (WRF) Model were used to study the dynamics of the wake generation and its temporal evolution. The comparison of the model results and observations reveals a remarkable fidelity of the simulated wake features within the marine boundary layer (MBL). Strong potential vorticity (PV) anomalies were found in the simulated MBL wake, emanating from the flanks of the island. The response of the wake formation within the MBL to surface friction and enhanced thermal forcing is explored through the model sensitivity analyses.

Denotes Open Access content.

Additional affiliation: Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Vanda Grubišić, EOL, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: grubisic@ucar.edu
Save
  • Caldeira, R. M. A., and R. Tomé, 2013: Wake response to an ocean-feedback mechanism: Madeira island case study. Bound.-Layer Meteor., 148, 419436, doi:10.1007/s10546-013-9817-y.

    • Search Google Scholar
    • Export Citation
  • Chopra, K. P., and L. F. Hubert, 1965: Mesoscale eddies in wake of islands. J. Atmos. Sci., 22, 652657, doi:10.1175/1520-0469(1965)022<0652:MEIWOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, R., B. Hayden, D. Gay, W. L. Phillips, and G. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, doi:10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and D. Durran, 2002a: Lee-vortex formation in free-slip stratified flow over ridges. Part I: Comparison of weakly nonlinear inviscid theory and fully nonlinear viscous simulations. J. Atmos. Sci., 59, 11531165, doi:10.1175/1520-0469(2002)059<1153:LVFIFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and D. Durran, 2002b: Lee-vortex formation in free-slip stratified flow over ridges. Part II: Mechanisms of vorticity and PV production in nonlinear viscous wakes. J. Atmos. Sci., 59, 11661181, doi:10.1175/1520-0469(2002)059<1166:LVFIFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Etling, D., 1989: On atmospheric vortex streets in the wake of large islands. Meteor. Atmos. Phys., 41, 157164, doi:10.1007/BF01043134.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Grubišić, V., R. B. Smith, and C. Schär, 1995: The effect of bottom friction on shallow-water flow past an isolated obstacle. J. Atmos. Sci., 52, 19852005, doi:10.1175/1520-0469(1995)052<1985:TEOBFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hubert, L. F., and A. F. Krueger, 1962: Satellite pictures of mesoscale eddies. Mon. Wea. Rev., 90, 457463, doi:10.1175/1520-0493(1962)090<0457:SPOME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2014: Application of reduced-gravity shallow-water theory to atmospheric flow over topography. J. Atmos. Sci., 71, 14601479, doi:10.1175/JAS-D-13-0101.1.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and A. Wada, 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744, doi:10.1007/s10872-007-0063-0.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., R. B. Smith, and A. Nugent, 2013: The dynamics of ascent-forced orographic convection in the tropics: Results from Dominica. J. Atmos. Sci., 70, 40674088, doi:10.1175/JAS-D-13-016.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E., J. Steven, J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nickerson, E. C., and M. A. Dias, 1981: On the existence of atmospheric vortices downwind of Hawaii during the HAMEC project. J. Appl. Meteor., 20, 868873, doi:10.1175/1520-0450(1981)020<0868:OTEOAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

  • Nunalee, C. G., and S. Basu, 2014: On the periodicity of atmospheric von Kármán vortex streets. Environ. Fluid Mech., 14, 1335–1355, doi:10.1007/s10652-014-9340-9.

  • Rotunno, R., and P. K. Smolarkiewicz, 1995: Vorticity generation in the shallow-water equations as applied to hydraulic jumps. J. Atmos. Sci., 52, 320330, doi:10.1175/1520-0469(1995)052<0320:VGITSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., V. Grubišić, and P. K. Smolarkiewicz, 1999: Vorticity and potential vorticity in mountain wakes. J. Atmos. Sci., 56, 27962810, doi:10.1175/1520-0469(1999)056<2796:VAPVIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schär, C., 1993: A generalization of Bernoulli’s theorem. J. Atmos. Sci., 50, 14371443, doi:10.1175/1520-0469(1993)050<1437:AGOBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and R. B. Smith, 1993a: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 13731400, doi:10.1175/1520-0469(1993)050<1373:SWFPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and R. B. Smith, 1993b: Shallow-water flow past isolated topography. Part II: Transition to vortex shedding. J. Atmos. Sci., 50, 14011412, doi:10.1175/1520-0469(1993)050<1401:SWFPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and D. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54, 534554, doi:10.1175/1520-0469(1997)054<0534:VFAVSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1986: Cloud Investigation by Satellite. Wiley, 300 pp.

  • Skamarock, W., and J. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and V. Grubišić, 1993: Aerial observations of Hawaii’s wake. J. Atmos. Sci., 50, 37283750, doi:10.1175/1520-0469(1993)050<3728:AOOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., A. C. Gleason, P. A. Gluhosky, and V. Grubišić, 1997: The wake of St. Vincent. J. Atmos. Sci., 54, 606623, doi:10.1175/1520-0469(1997)054<0606:TWOSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., and J. Zawislak, 2006: An observational study of vortex spacing in island wake vortex streets. Mon. Wea. Rev., 134, 22852294, doi:10.1175/MWR3186.1.

    • Search Google Scholar
    • Export Citation
  • Zimmermann, L. I., 1969: Atmospheric wake phenomena near the Canary Islands. J. Atmos. Sci., 8, 896907, doi:10.1175/1520-0450(1969)008<0896:AWPNTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 491 148 13
PDF Downloads 356 102 14