The Role of Shallow Cloud Moistening in MJO and Non-MJO Convective Events over the ARM Manus Site

David M. Zermeño-Díaz Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David M. Zermeño-Díaz in
Current site
Google Scholar
PubMed
Close
,
Chidong Zhang Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Chidong Zhang in
Current site
Google Scholar
PubMed
Close
,
Pavlos Kollias Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Pavlos Kollias in
Current site
Google Scholar
PubMed
Close
, and
Heike Kalesse Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Heike Kalesse in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations from the Atmospheric Radiation Measurement Program (ARM) site at Manus Island in the western Pacific and (re)analysis products are used to investigate moistening by shallow cumulus clouds and by the circulation in large-scale convective events. Large-scale convective events are defined as rainfall anomalies larger than one standard deviation for a minimum of three consecutive days over a 10° × 10° domain centered at Manus. These events are categorized into two groups: Madden–Julian oscillation (MJO) events, with eastward propagation, and non-MJO events, without propagation. Shallow cumulus clouds are identified as continuous time–height echoes from 1-min cloud radar observations with their tops below the freezing level and their bases within the boundary layer. Daily moistening tendencies of shallow clouds, estimated from differences between their mean liquid water content and precipitation over their presumed life spans, and those of physical processes and advection from (re)analysis products are compared with local moistening tendencies from soundings. Increases in low-level moisture before rainfall peaks of MJO and non-MJO events are evident in both observations and reanalyses. Before and after the rainfall peaks of these events, precipitating and nonprecipitating shallow clouds exist all the time, but their occurrence fluctuates randomly. Their contributions to moisture tendencies through evaporation of condensed water are evident. These clouds provide perpetual background moistening to the lower troposphere but do not cause the observed increase in low-level moisture leading to rainfall peaks. Such moisture increase is mainly caused by anomalous nonlinear zonal advection.

Current affiliation: Leibniz Institute for Tropospheric Research, Leipzig, Germany.

Corresponding author address: David Zermeno, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098. E-mail: dzermeno@rsmas.miami.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Observations from the Atmospheric Radiation Measurement Program (ARM) site at Manus Island in the western Pacific and (re)analysis products are used to investigate moistening by shallow cumulus clouds and by the circulation in large-scale convective events. Large-scale convective events are defined as rainfall anomalies larger than one standard deviation for a minimum of three consecutive days over a 10° × 10° domain centered at Manus. These events are categorized into two groups: Madden–Julian oscillation (MJO) events, with eastward propagation, and non-MJO events, without propagation. Shallow cumulus clouds are identified as continuous time–height echoes from 1-min cloud radar observations with their tops below the freezing level and their bases within the boundary layer. Daily moistening tendencies of shallow clouds, estimated from differences between their mean liquid water content and precipitation over their presumed life spans, and those of physical processes and advection from (re)analysis products are compared with local moistening tendencies from soundings. Increases in low-level moisture before rainfall peaks of MJO and non-MJO events are evident in both observations and reanalyses. Before and after the rainfall peaks of these events, precipitating and nonprecipitating shallow clouds exist all the time, but their occurrence fluctuates randomly. Their contributions to moisture tendencies through evaporation of condensed water are evident. These clouds provide perpetual background moistening to the lower troposphere but do not cause the observed increase in low-level moisture leading to rainfall peaks. Such moisture increase is mainly caused by anomalous nonlinear zonal advection.

Current affiliation: Leibniz Institute for Tropospheric Research, Leipzig, Germany.

Corresponding author address: David Zermeno, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098. E-mail: dzermeno@rsmas.miami.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement program. Phys. Today, 56, 3844, doi:10.1063/1.1554135.

    • Search Google Scholar
    • Export Citation
  • Ackerman, T. P., W. E. Clements, F. J. Barnes, and D. S. Renne, 1999: Tropical western Pacific cloud and radiation testbed: Science, siting, and implementation strategies. ARM Tech. Rep. ARM-99-004, 71 pp. [Available online at http://www.arm.gov/publications/site_reports/twp/arm-99-004.pdf.]

  • Atlas, D., 1954: The estimation of cloud parameters by radar. J. Meteor., 11, 309317, doi:10.1175/1520-0469(1954)011<0309:TEOCPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., and R. A. Houze, 2013: The precipitating cloud population of the Madden–Julian oscillation over the Indian and west Pacific Oceans. J. Geophys. Res. Atmos., 118, 69967023, doi:10.1002/jgrd.50375.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., K. Yoneyama, M. Katsumata, T. Nishizawa, K. Yasunaga, and R. Shirooka, 2015: Observation of moisture tendencies related to shallow convection. J. Atmos. Sci., 72, 641659, doi:10.1175/JAS-D-14-0042.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Cai, Q., G. J. Zhang, and T. Zhou, 2013: Impacts of shallow convection on MJO simulation: A moist static energy and moisture budget analysis. J. Climate, 26, 24172431, doi:10.1175/JCLI-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-H., and A. D. Del Genio, 2009: Evaluation of tropical cloud regimes in observations and a general circulation model. Climate Dyn., 32, 355369, doi:10.1007/s00382-008-0386-6.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, doi:10.1175/JAS-D-13-038.1.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20, 752759, doi:10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, doi:10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Deng, L., S. A. McFarlane, and J. E. Flaherty, 2013: Characteristics associated with the Madden–Julian oscillation at Manus Island. J. Climate, 26, 33423356, doi:10.1175/JCLI-D-12-00312.1.

    • Search Google Scholar
    • Export Citation
  • Deng, M., and Coauthors, 2014: Stratiform and convective precipitation observed by multiple radars during the DYNAMO/AMIE Experiment. J. Appl. Meteor. Climatol., 53, 25032523, doi:10.1175/JAMC-D-13-0311.1.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2011: ECMWF's Operational Model Analysis, starting in 2011. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 26 February 2014 doi:10.5065/D6ZG6Q9F.

  • Feng, Z., X. Dong, and B. Xi, 2009: A method to merge WSR-88D data with ARM SGP millimeter cloud radar data by studying deep convective systems. J. Atmos. Oceanic Technol., 26, 958971, doi:10.1175/2008JTECHA1190.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. A. McFarlane, C. Schumacher, S. Ellis, J. Comstock, and N. Bharadwaj, 2014: Constructing a merged cloud–precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE Experiment at Addu Atoll. J. Atmos. Oceanic Technol., 31, 10211042, doi:10.1175/JTECH-D-13-00132.1.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with Ka-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52, 27882799, doi:10.1175/1520-0469(1995)052<2788:MOSCAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Y. Dawei, 2004: Classification and characterization of tropical precipitation based on high-resolution airborne vertical incidence radar. Part I: Classification. J. Appl. Meteor., 43, 15541566, doi:10.1175/JAM2158.1.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465497, doi:10.1175/1520-0442(1994)007<0465:NGSOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hollars, S., Q. Fu, J. M. Comstock, and T. P. Ackerman, 2004: Comparisons of cloud-top height retrievals from ground-based 35 GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site. Atmos. Res., 72, 169186, doi:10.1016/j.atmosres.2004.03.015.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1976: The role of convective-scale precipitation downdrafts in cumulus and synoptic-scale interactions. J. Atmos. Sci., 33, 18901910, doi:10.1175/1520-0469(1976)033<1890:TROCSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and X. Lin, 1997: Episodic trade-wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54, 20202034, doi:10.1175/1520-0469(1997)054<2020:ETWROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and K. A. Hart, 1996: Tropical inversions near the 0°C level. J. Atmos. Sci., 53, 18381855, doi:10.1175/1520-0469(1996)053<1838:TINTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert Jr., and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, doi:10.1175/JAS-D-14-0202.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and B. C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat flux in the Madden–Julian oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9, 30863104, doi:10.1175/1520-0442(1996)009<3086:TROLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalesse, H., and P. Kollias, 2013: Climatology of high cloud dynamics using profiling ARM Doppler radar observations. J. Climate, 26, 63406359, doi:10.1175/JCLI-D-12-00695.1.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007a: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, doi:10.1175/BAMS-88-10-1608.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., G. Tselioudis, and B. A. Albrecht, 2007b: Cloud climatology at the Southern Great Plains and the layer structure, drizzle, and atmospheric modes of continental stratus. J. Geophys. Res., 112, D09116, doi:10.1029/2006JD007307.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Langhans, W., K. Yeo, and D. M. Romps, 2015: Lagrangian investigation of the precipitation efficiency of convective clouds. J. Atmos. Sci., 72, 10451062, doi:10.1175/JAS-D-14-0159.1.

    • Search Google Scholar
    • Export Citation
  • Lappen, C.-L., and C. Schumacher, 2014: The role of tilted heating in the evolution of the MJO. J. Geophys. Res. Atmos., 119, 29662989, doi:10.1002/2013JD020638.

    • Search Google Scholar
    • Export Citation
  • Lau, W., and H. Wu, 2003: Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30, 2290, doi:10.1029/2003GL018567.

    • Search Google Scholar
    • Export Citation
  • Leon, D. C., Z. Wang, and D. Liu, 2008: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res. Atmos, 113, D00A14, doi:10.1029/2008JD009835.

    • Search Google Scholar
    • Export Citation
  • Li, C., X. Jia, J. Ling, W. Zhou, and C. Zhang, 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32, 167187, doi:10.1007/s00382-008-0455-x.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and K. Sassen, 1994: Investigation of relationships between Ka-band radar reflectivity and ice and liquid water contents. Atmos. Res., 34, 231248, doi:10.1016/0169-8095(94)90094-9.

    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, and P. Bechtold, 2013: Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean. J. Atmos. Sci., 70, 26962712, doi:10.1175/JAS-D-13-029.1.

    • Search Google Scholar
    • Export Citation
  • Ling, J., P. Bauer, P. Bechtold, A. Beljaars, R. Forbes, F. Vitart, M. Ulate, and C. Zhang, 2014: Global versus local MJO forecast skill of the ECMWF model during DYNAMO. Mon. Wea. Rev., 142, 22282247, doi:10.1175/MWR-D-13-00292.1.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Coauthors, 2013: ARM research in the equatorial western Pacific: A decade and counting. Bull. Amer. Meteor. Soc., 94, 695708, doi:10.1175/BAMS-D-11-00137.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., S. N. Stechmann, and B. Khouider, 2007: Madden–Julian oscillation analog and intraseasonal variability in a multicloud model above the equator. Proc. Natl. Acad. Sci. USA, 104, 99199924, doi:10.1073/pnas.0703572104.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J.-L. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and C. D. Kummerow, 2006: Observations of tropical precipitating clouds ranging from shallow to deep convective systems. Geophys. Res. Lett., 33, L16805, doi:10.1029/2006GL026547.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., M. Satoh, and H. Miura, 2008: A joint satellite and global cloud-resolving model analysis of a Madden–Julian oscillation event: Model diagnosis. J. Geophys. Res., 113, D17210, doi:10.1029/2008JD009986.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., 2005: Seasonal variability in clouds and radiation at the Manus ARM site. J. Climate, 18, 24172428, doi:10.1175/JCLI3401.1.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and S. A. McFarlane, 2009: Cloud classes and radiative heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) sites. J. Geophys. Res., 114, D19204, doi:10.1029/2009JD011703.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., S. A. McFarlane, M. A. Miller, and K. L. Johnson, 2007: Cloud properties and associated radiative heating rates in the tropical western Pacific. J. Geophys. Res., 112, D05201, doi:10.1029/2006JD007555.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2005: Attenuation-based estimates of rainfall rates aloft with vertically pointing Ka-band radars. J. Atmos. Oceanic Technol., 22, 4354, doi:10.1175/JTECH-1677.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, doi:10.1002/qj.224.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S., K. F. Evans, and A. S. Ackerman, 2002: A Bayesian algorithm for the retrieval of liquid water cloud properties from microwave radiometer and millimeter radar data. J. Geophys. Res., 107, AAC 12-1–AAC 12-21, doi:10.1029/2001JD001011.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S., J. H. Mather, and T. P. Ackerman., 2007: Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res., 112, D14218, doi:10.1029/2006JD008290.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., and A. J. Oberthaler, 2013: Numerical simulation of tropical cumulus congestus during TOGA COARE. J. Adv. Model. Earth Syst., 5, 623637, doi:10.1002/jame.20043.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455, doi:10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Myers, D. S., and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16, 929950, doi:10.1175/1520-0442(2003)016<0929:TDWVAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and S. Esbensen, 1974: Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev., 102, 1728, doi:10.1175/1520-0493(1974)102<0017:HAMBAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riley, E. M., B. E. Mapes, and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new perspective from CloudSat. J. Atmos. Sci., 68, 30323051, doi:10.1175/JAS-D-11-030.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, doi:10.1029/2007GL032591.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and K. Nakamura, 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13, 41074124, doi:10.1175/1520-0442(2000)013<4107:TROOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thual, S., A. J. Majda, and S. N. Stechmann, 2014: A stochastic skeleton model for the MJO. J. Atmos. Sci., 71, 697715, doi:10.1175/JAS-D-13-0186.1.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615, doi:10.1175/2010JAS3357.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: Analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 20512065, doi:10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. N. Long, J. H. Mather, and X. Liu., 2010: Convective signals from surface measurements at ARM tropical western Pacific site: Manus. Climate Dyn., 36, 431449, doi:10.1007/s00382-009-0736-z.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and J. P. Taylor, 2001: Liquid water path variability in unbroken marine stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 127, 26352662, doi:10.1002/qj.49712757807.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., and X. Song, 2009: Interaction of deep and shallow convection is key to Madden–Julian oscillation simulation. Geophys. Res. Lett., 36, L09708, doi:10.1029/2009GL037340.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62, 12691290, doi:10.1175/JAS3414.1.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and B. Mapes, 2008: Cloud vertical structure observed from space and ship over the Bay of Bengal and eastern tropical Pacific. J. Meteor. Soc. Japan, 86A, 205218, doi:10.2151/jmsj.86A.205.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 555 271 25
PDF Downloads 167 60 11