The Signature of Aerosols and Meteorology in Long-Term Cloud Radar Observations of Trade Wind Cumuli

Katrin Lonitz Max Planck Institute for Meteorology, Hamburg, Germany, and European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Katrin Lonitz in
Current site
Google Scholar
PubMed
Close
,
Bjorn Stevens Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Bjorn Stevens in
Current site
Google Scholar
PubMed
Close
,
Louise Nuijens Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Louise Nuijens in
Current site
Google Scholar
PubMed
Close
,
Vivek Sant Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Vivek Sant in
Current site
Google Scholar
PubMed
Close
,
Lutz Hirsch Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Lutz Hirsch in
Current site
Google Scholar
PubMed
Close
, and
Axel Seifert Hans-Ertel Centre for Weather Research, Deutscher Wetterdienst, Hamburg, Germany

Search for other papers by Axel Seifert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The signature of aerosols and meteorology on the development of precipitation from shallow cumuli in the trades is investigated with ground-based lidar and radar remote sensing. The measurements are taken from a cloud observatory recently established on the windward shore of Barbados. Cloud microphysical development is explored through an analysis of the radar echo of shallow cumuli before the development of active precipitation. The increase of reflectivity with height (Z gradient) depends on the amount of cloud water, which varies with meteorology, and cloud droplet number concentration N, which varies with the aerosol. Clouds with a large Z gradient have a higher tendency to form precipitation than clouds with a small Z gradient. Under similar meteorological conditions, the Z gradient is expected to be large in an environment with few aerosols and small in an environment with many aerosols. The aerosol environment is defined using three methods, but only one (based on the Raman lidar linear-depolarization ratio) to measure dusty conditions correlates significantly with the Z gradient. On average, nondusty days are characterized by a larger Z gradient. However, the dust concentration varies seasonally and covaries with relative humidity. Large-eddy simulations show that small changes in the relative humidity can have as much influence on the development of precipitation within the cloud layer as large changes in N. When clouds are conditioned on their ambient relative humidity, the sensitivity of the Z gradient to dust vanishes.

Corresponding author address: Katrin Lonitz, ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: katrin.lonitz@ecmwf.int

Denotes Chemistry/Aerosol content

Abstract

The signature of aerosols and meteorology on the development of precipitation from shallow cumuli in the trades is investigated with ground-based lidar and radar remote sensing. The measurements are taken from a cloud observatory recently established on the windward shore of Barbados. Cloud microphysical development is explored through an analysis of the radar echo of shallow cumuli before the development of active precipitation. The increase of reflectivity with height (Z gradient) depends on the amount of cloud water, which varies with meteorology, and cloud droplet number concentration N, which varies with the aerosol. Clouds with a large Z gradient have a higher tendency to form precipitation than clouds with a small Z gradient. Under similar meteorological conditions, the Z gradient is expected to be large in an environment with few aerosols and small in an environment with many aerosols. The aerosol environment is defined using three methods, but only one (based on the Raman lidar linear-depolarization ratio) to measure dusty conditions correlates significantly with the Z gradient. On average, nondusty days are characterized by a larger Z gradient. However, the dust concentration varies seasonally and covaries with relative humidity. Large-eddy simulations show that small changes in the relative humidity can have as much influence on the development of precipitation within the cloud layer as large changes in N. When clouds are conditioned on their ambient relative humidity, the sensitivity of the Z gradient to dust vanishes.

Corresponding author address: Katrin Lonitz, ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: katrin.lonitz@ecmwf.int

Denotes Chemistry/Aerosol content

Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992, doi:10.1029/GL017i001p00089.

    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193206, doi:10.1016/0169-8095(94)90020-5.

    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., and G. Doms, 1990: The time evolution of a drop spectrum due to collision/coalescence: A numerical case study on the effects of self collection, autoconversion and accretion. Meteor. Rundsch., 42, 5261.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626641, doi:10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2.

  • Blyth, A. M., and J. Latham, 1993: Influence of glaciation on an effective-radius parametrization. Quart. J. Roy. Meteor. Soc., 119, 14691474, doi:10.1002/qj.49711951413.

    • Search Google Scholar
    • Export Citation
  • Boers, R., J. R. Acarreta, and J. L. Gras, 2006: Satellite monitoring of the first indirect aerosol effect: Retrieval of the droplet concentration of water clouds. J. Geophys. Res., 111, D22208, doi:10.1029/2005JD006838.

    • Search Google Scholar
    • Export Citation
  • Brandau, C. L., H. W. J. Russchenberg, and W. H. Knap, 2010: Evaluation of ground-based remotely sensed liquid water cloud properties using shortwave radiation measurements. Atmos. Res., 96, 366377, doi:10.1016/j.atmosres.2010.01.009.

    • Search Google Scholar
    • Export Citation
  • Burdanowitz, J., L. Nuijens, B. Stevens, and C. Klepp, 2015: Evaluating light rain from satellite- and ground-based remote sensing data over the subtropical North Atlantic. J. Appl. Meteor. Climatol., 54, 556572, doi:10.1175/JAMC-D-14-0146.1.

    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J. L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011, doi:10.1175/JAS3928.1.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. K. Hall, 1955: A census of cumulus-cloud height versus precipitation in the vicinity of Puerto Rico during the winter and spring of 1953-1954. J. Meteor., 12, 176178, doi:10.1175/1520-0469(1955)012<0176:ACOCCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deirmendjian, D., 1969: Electromagnetic scattering on spherical polydispersions. United States Air Force Project Rand Tech. Rep. R-456-PR, 312 pp. [Available online at http://www.rand.org/content/dam/rand/pubs/reports/2006/R456.pdf.]

  • Draxler, R. R., and G. D. Hess, 1997: Description of the HYSPLIT_4 modeling system. NOAA Air Resources Laboratory Tech. Memo. ERL ARL-224, 27 pp. [Available online at http://www.arl.noaa.gov/documents/reports/arl-224.pdf.]

  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with Kα-Band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52, 27882799, doi:10.1175/1520-0469(1995)052<2788:MOSCAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., G. M. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A, 87106, doi:10.2151/jmsj.86A.87.

    • Search Google Scholar
    • Export Citation
  • Grenzhäuser, J., 2012: Entwicklung neuartiger Mess- und Auswertungsstrategien für ein scannendes Wolkenradar und deren Anwendungsbereiche. Institut für Meteorologie und Klimaforschung am Karlsruher Institut für Technologie Doc. 55, 138 pp.

  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, 2005: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic ocean. Proc. Natl. Acad. Sci. USA, 102, 11 20711 212, doi:10.1073/pnas.0505191102.

    • Search Google Scholar
    • Export Citation
  • Kim, B. G., M. A. Miller, S. E. Schwartz, Y. G. Liu, and Q. L. Min, 2008: The role of adiabaticity in the aerosol first indirect effect. J. Geophys. Res., 113, D05210, doi:10.1029/2007JD008961.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., J. Vivekanandan, and S. Lasher-Trapp, 2002: First radar echoes and early ZDR history of Florida cumulus. J. Atmos. Sci., 59, 14541472, doi:10.1175/1520-0469(2002)059<1454:FREATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, doi:10.1175/BAMS-88-10-1608.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., and S.-C. Ou, 1989: The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. J. Geophys. Res., 94, 85998607, doi:10.1029/JD094iD06p08599.

    • Search Google Scholar
    • Export Citation
  • Luke, E. P., and P. Kollias, 2013: Separating cloud and drizzle radar moments during precipitation onset using Doppler spectra. J. Atmos. Oceanic Technol., 30, 16561671, doi:10.1175/JTECH-D-11-00195.1.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., B. Stevens, and A. P. Siebesma, 2009: The environment of precipitating shallow cumulus convection. J. Atmos. Sci., 66, 19621979, doi:10.1175/2008JAS2841.1.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., I. Serikov, L. Hirsch, K. Lonitz, and B. Stevens, 2014: The distribution and variability of low-level cloud in the North Atlantic trades. Quart. J. Roy. Meteor. Soc., 140, 23642374, doi:10.1002/qj.2307.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1972: Vertical and areal distribution of Saharan dust over western equatorial north Atlantic Ocean. J. Geophys. Res., 77, 52555265, doi:10.1029/JC077i027p05255.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and P. J. Lamb, 2003: African droughts and dust transport to the Caribbean: Climate change implications. Science, 302, 10241027, doi:10.1126/science.1089915.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in Shallow Cumulus over the Ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, doi:10.1175/BAMS-88-12-1912.

    • Search Google Scholar
    • Export Citation
  • Savoie, D. L., and J. M. Prospero, 1980: Water-soluble potassium, calcium, and magnesium in the aerosols over the tropical North Atlantic. J. Geophys. Res., 85, 385392, doi:10.1029/JC085iC01p00385.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979: Marine stratocumulus convection. Part II: Horizontally inhomogeneous solutions. J. Atmos. Sci., 36, 13081324, doi:10.1175/1520-0469(1979)036<1308:MSCPIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and B. Stevens, 2010: Microphysical scaling relations in a kinematic model of isolated shallow cumulus clouds. J. Atmos. Sci., 67, 15751590, doi:10.1175/2009JAS3319.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., L. Nuijens, and B. Stevens, 2010: Turbulence effects on warm-rain autoconversion in precipitating shallow convection. Quart. J. Roy. Meteor. Soc., 136, 17531762, doi:10.1002/qj.684.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., T. Heus, R. Pincus, and B. Stevens, 2015: Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. J. Adv. Model. Earth Syst., doi:10.1002/2015MS000489, in press.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and K. Nakamura, 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13, 41074124, doi:10.1175/1520-0442(2000)013<4107:TROOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., and Coauthors, 2013: The fine-scale structure of the trade wind cumuli over Barbados—An introduction to the CARRIBA project. Atmos. Chem. Phys., 13, 10 06110 077, doi:10.5194/acp-13-10061-2013.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A., B. N. Holben, D. Savoie, J. M. Prospero, Y. J. Kaufman, D. Tanre, T. F. Eck, and I. Slutsker, 2000: Relationship between column aerosol optical thickness and in situ ground based dust concentrations over Barbados. Geophys. Res. Lett., 27, 16431646, doi:10.1029/1999GL011336.

    • Search Google Scholar
    • Export Citation
  • Snodgrass, E. R., L. Di Girolamo, and R. M. Rauber, 2009: Precipitation characteristics of trade wind clouds during RICO derived from radar, satellite, and aircraft measurements. J. Appl. Meteor. Climatol., 48, 464483, doi:10.1175/2008JAMC1946.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A, 143162, doi:10.2151/jmsj.86A.143.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and J. L. Brenguier, 2009: Cloud-controlling factors low clouds. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., The MIT Press, 173–196.

  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and O. Boucher, 2012: Climate science: The aerosol effect. Nature, 490, 4041, doi:10.1038/490040a.

  • Stevens, B., and Coauthors, 2015: The Barbados Cloud Observatory: Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00247.1, in press.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data inversion. J. Climate, 23, 20302046, doi:10.1175/2009JCLI3110.1.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and planetary albedo. Atmos. Environ., 8, 12511256, doi:10.1016/0004-6981(74)90004-3.

  • Warneck, P., 1988: Chemistry of the Natural Atmosphere. International Geophysics Series, Vol. 41, Academic Press, 757 pp.

  • Wood, R., T. L. Kubar, and D. L. Hartmann, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 66, 29732990, doi:10.1175/2009JAS3072.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., H. Xue, and G. Feingold, 2011: Vertical profiles of droplet effective radius in shallow convective clouds. Atmos. Chem. Phys., 11, 46334644, doi:10.5194/acp-11-4633-2011.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310, doi:10.1175/JAS3415.1.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2012: On trade wind cumulus cold pools. J. Atmos. Sci., 69, 258280, doi:10.1175/JAS-D-11-0143.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 483 125 11
PDF Downloads 265 81 6