Dynamical Response to the QBO in the Northern Winter Stratosphere: Signatures in Wave Forcing and Eddy Fluxes of Potential Vorticity

Ian P. White British Antarctic Survey, Cambridge, and Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom

Search for other papers by Ian P. White in
Current site
Google Scholar
PubMed
Close
,
Hua Lu British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Hua Lu in
Current site
Google Scholar
PubMed
Close
,
Nicholas J. Mitchell Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom

Search for other papers by Nicholas J. Mitchell in
Current site
Google Scholar
PubMed
Close
, and
Tony Phillips British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Tony Phillips in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wave–mean flow interactions associated with the Holton–Tan effect (HTE), whereby the tropical quasi-biennial oscillation (QBO) modulates the Northern Hemisphere wintertime stratospheric polar vortex, are studied using the ERA-Interim dataset. Significant evidence of the HTE in isentropic coordinates is found, with a weaker and warmer polar vortex present when the lower-stratospheric QBO is in its easterly phase (QBOe). For the first time, the authors quantify the QBO modulation of wave propagation, wave–mean flow interaction, and wave decay/growth via a calculation of potential vorticity (PV)-based measures, the zonal-mean momentum budget, and up-/downgradient eddy PV fluxes. The effect of the tropospheric subtropical jet on QBO modulation of the wave activity is also investigated. In the subtropical-to-midlatitude lower stratosphere, QBOe is associated with an enhanced upward flux of wave activity, and corresponding wave convergence and wave growth, which leads to a stronger poleward zonal-mean meridional circulation and consequently a warmer polar region. In the middle stratosphere, QBOe is associated with increased poleward wave propagation, leading to enhanced wave convergence and in situ wave growth at high latitudes and contributing to the weaker polar vortex. In agreement with recent studies, the results suggest that the critical-line effect cannot fully account for these wave anomalies associated with the HTE. Instead, it is suggestive of a new, additional mechanism that hinges on the QBO-induced meridional circulation effect on the latitudinal positioning of the subtropical jet. Under QBOe, the QBO-induced meridional circulation causes a poleward shift of the subtropical jet, encouraging more waves to propagate into the stratosphere at midlatitudes.

Corresponding author address: Ian P. White, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: iwhit@bas.ac.uk

Abstract

Wave–mean flow interactions associated with the Holton–Tan effect (HTE), whereby the tropical quasi-biennial oscillation (QBO) modulates the Northern Hemisphere wintertime stratospheric polar vortex, are studied using the ERA-Interim dataset. Significant evidence of the HTE in isentropic coordinates is found, with a weaker and warmer polar vortex present when the lower-stratospheric QBO is in its easterly phase (QBOe). For the first time, the authors quantify the QBO modulation of wave propagation, wave–mean flow interaction, and wave decay/growth via a calculation of potential vorticity (PV)-based measures, the zonal-mean momentum budget, and up-/downgradient eddy PV fluxes. The effect of the tropospheric subtropical jet on QBO modulation of the wave activity is also investigated. In the subtropical-to-midlatitude lower stratosphere, QBOe is associated with an enhanced upward flux of wave activity, and corresponding wave convergence and wave growth, which leads to a stronger poleward zonal-mean meridional circulation and consequently a warmer polar region. In the middle stratosphere, QBOe is associated with increased poleward wave propagation, leading to enhanced wave convergence and in situ wave growth at high latitudes and contributing to the weaker polar vortex. In agreement with recent studies, the results suggest that the critical-line effect cannot fully account for these wave anomalies associated with the HTE. Instead, it is suggestive of a new, additional mechanism that hinges on the QBO-induced meridional circulation effect on the latitudinal positioning of the subtropical jet. Under QBOe, the QBO-induced meridional circulation causes a poleward shift of the subtropical jet, encouraging more waves to propagate into the stratosphere at midlatitudes.

Corresponding author address: Ian P. White, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: iwhit@bas.ac.uk
Save
  • Abatzoglou, J. T., and G. Magnusdottir, 2007: Wave breaking along the stratospheric polar vortex as seen in ERA-40 data. Geophys. Res. Lett., 34, L08812, doi:10.1029/2007GL029509.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1983: A finite-amplitude Eliassen–Palm theorem in isentropic coordinates. J. Atmos. Sci., 40, 18771883, doi:10.1175/1520-0469(1983)040<1877:AFAEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1987: On the interpretation of the Eliassen–Palm flux divergence. Quart. J. Roy. Meteor. Soc., 113, 323338, doi:10.1002/qj.49711347518.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics.International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Anstey, J. A., and T. G. Shepherd, 2014: High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140, 121, doi:10.1002/qj.2132.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and J. R. Holton, 1988: Climatology of the stratospheric polar vortex and planetary wave breaking. J. Atmos. Sci., 45, 11231142, doi:10.1175/1520-0469(1988)045<1123:COTSPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, doi:10.1029/1999RG000073.

  • Bell, C. J., L. J. Gray, A. J. Charlton-Perez, M. M. Joshi, and A. A. Scaife, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 40834096, doi:10.1175/2009JCLI2717.1.

    • Search Google Scholar
    • Export Citation
  • Birner, T., D. W. J. Thompson, and T. G. Shepherd, 2013: Up-gradient eddy fluxes of potential vorticity near the subtropical jet. Geophys. Res. Lett., 40, 59885993, doi:10.1002/2013GL057728.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and T. Birner, 2011: Isentropic slopes, downgradient eddy fluxes, and the extratropical atmospheric circulation response to tropical tropospheric heating. J. Atmos. Sci., 68, 22922305, doi:10.1175/JAS-D-10-05025.1.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., M. A. Giorgetta, R. Garcia-Herrera, and E. Manzini, 2009: Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J. Geophys. Res., 114, D13109, doi:10.1029/2008JD011445.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Chen, P., and W. A. Robinson, 1992: Propagation of planetary waves between the troposphere and stratosphere. J. Atmos. Sci., 49, 25332545, doi:10.1175/1520-0469(1992)049<2533:POPWBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and M. P. Baldwin, 1991: Quasi-biennial modulation of planetary-wave fluxes in the Northern Hemisphere winter. J. Atmos. Sci., 48, 10431061, doi:10.1175/1520-0469(1991)048<1043:QBMOPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edouard, S., R. Vautard, and G. Brunet, 1997: On the maintenance of potential vorticity in isentropic coordinates. Quart. J. Roy. Meteor. Soc., 123, 20692094, doi:10.1002/qj.49712354314.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 12731289, doi:10.1175/2011JAS3665.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., T. A. Shaw, D. L. Hartmann, and D. W. Waugh, 2012: Does the Holton–Tan mechanism explain how the quasi-biennial oscillation modulates the Arctic polar vortex? J. Atmos. Sci., 69, 17131733, doi:10.1175/JAS-D-11-0209.1.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., S. J. Phipps, T. J. Dunkerton, M. P. Baldwin, E. F. Drysdale, and M. R. Allen, 2001: A data study of the influence of the equatorial upper stratosphere on northern-hemisphere stratospheric sudden warmings. Quart. J. Roy. Meteor. Soc., 127, 19852003, doi:10.1002/qj.49712757607.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., S. Sparrow, M. Juckes, A. O’Neill, and D. G. Andrews, 2003: Flow regimes in the winter stratosphere of the northern hemisphere. Quart. J. Roy. Meteor. Soc., 129, 925945, doi:10.1256/qj.02.82.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., S. Crooks, C. Pascoe, S. Sparrow, and M. Palmer, 2004: Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci., 61, 27772796, doi:10.1175/JAS-3297.1.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, doi:10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and A. S. Huesmann, 2007: A seasonal climatology of Rossby wave breaking in the 330–2000-K layer. J. Atmos. Sci., 64, 19221940, doi:10.1175/JAS3927.1.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and A. S. Huesmann, 2009: Seasonal influence of the quasi-biennial oscillation on stratospheric jets and Rossby wave breaking. J. Atmos. Sci., 66, 935946, doi:10.1175/2008JAS2631.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40, 24972507, doi:10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and C. H. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, doi:10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and C. H. Tan, 1982: The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere. J. Meteor. Soc. Japan, 60, 140148.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and J. Austin, 1991: The influence of the equatorial QBO on sudden stratospheric warmings. J. Atmos. Sci., 48, 607618, doi:10.1175/1520-0469(1991)048<0607:TIOTEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Huesmann, A. S., and M. H. Hitchman, 2001: The stratospheric quasi-biennial oscillation in the NCEP reanalyses: Climatological structures. J. Geophys. Res., 106, 11 85911 874, doi:10.1029/2001JD900031.

    • Search Google Scholar
    • Export Citation
  • Jones, D. B. A., H. R. Schneider, and M. B. McElroy, 1998: Effects of the quasi-biennial oscillation on the zonally averaged transport of tracers. J. Geophys. Res., 103, 11 23511 249, doi:10.1029/98JD00682.

    • Search Google Scholar
    • Export Citation
  • Kinnersley, J. S., 1999: Seasonal asymmetry of the low- and middle-latitude QBO circulation anomaly. J. Atmos. Sci., 56, 11401153, doi:10.1175/1520-0469(1999)056<1140:SAOTLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunz, T., K. Fraedrich, and F. Lunkeit, 2009: Impact of synoptic-scale wave breaking on the NAO and its connection with the stratosphere in ERA-40. J. Climate, 22, 54645480, doi:10.1175/2009JCLI2750.1.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1982: On the interannual variability of the middle stratosphere during the northern winters. J. Meteor. Soc. Japan, 60, 124139.

    • Search Google Scholar
    • Export Citation
  • Lachmy, O., and N. Harnik, 2014: The transition to a subtropical jet regime and its maintenance. J. Atmos. Sci., 71, 13891409, doi:10.1175/JAS-D-13-0125.1.

    • Search Google Scholar
    • Export Citation
  • Lait, L. R., 1994: An alternative form for potential vorticity. J. Atmos. Sci., 51, 17541759, doi:10.1175/1520-0469(1994)051<1754:AAFFPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, H., M. P. Baldwin, L. J. Gray, and M. J. Jarvis, 2008: Decadal-scale changes in the effect of the QBO on the northern stratospheric polar vortex. J. Geophys. Res., 113, D10114, doi:10.1029/2007JD009647.

    • Search Google Scholar
    • Export Citation
  • Lu, H., T. J. Bracegirdle, T. Phillips, A. Bushell, and L. J. Gray, 2014: Mechanisms for the Holton–Tan relationship and its decadal variation. J. Geophys. Res. Atmos., 119, 28112830, doi:10.1002/2013JD021352.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and A. A. Scaife, 2009: Impact of the QBO on surface winter climate. J. Geophys. Res., 114, D18110, doi:10.1029/2009JD011737.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwarz, and H. C. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64, 25762592, doi:10.1175/JAS3977.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60, 3765.

  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, doi:10.1038/305593a0.

  • Naito, Y., and I. Hirota, 1997: Interannual variability of the Northern winter stratospheric circulation related to the QBO and the solar cycle. J. Meteor. Soc. Japan, 75, 925937.

    • Search Google Scholar
    • Export Citation
  • Naito, Y., and S. Yoden, 2006: Behavior of planetary waves before and after stratospheric sudden warming events in several phases of the equatorial QBO. J. Atmos. Sci., 63, 16371649, doi:10.1175/JAS3702.1.

    • Search Google Scholar
    • Export Citation
  • Naoe, H., and K. Shibata, 2010: Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation. J. Geophys. Res., 115, D19102, doi:10.1029/2009JD012952.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., E. R. Nash, and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res., 106, 19 99920 010, doi:10.1029/2000JD000061.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and R. E. Young, 1992: Modeling the quasi-biennial oscillation’s effect on the winter stratospheric circulation. J. Atmos. Sci., 49, 24372448, doi:10.1175/1520-0469(1992)049<2437:MTQBOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, doi:10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pascoe, C. L., L. J. Gray, and A. A. Scaife, 2006: A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings. Geophys. Res. Lett., 33, L06825, doi:10.1029/2005GL024715.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793801, doi:10.2151/jmsj.80.793.

  • Plumb, R. A., and R. C. Bell, 1982: A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108, 335352, doi:10.1002/qj.49710845604.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, doi:10.1017/S0022112082002250.

    • Search Google Scholar
    • Export Citation
  • Ruzmaikin, A., J. Feynman, X. Jiang, and Y. L. Yung, 2005: Extratropical signature of the quasi-biennial oscillation. J. Geophys. Res., 110, D11111, doi:10.1029/2004JD005382.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, doi:10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., 1979: A theory of stationary long waves. Part III: Quasi-normal modes in a singular waveguide. Mon. Wea. Rev., 107, 751774, doi:10.1175/1520-0493(1979)107<0751:ATOSLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Watson, P. A. G., and L. J. Gray, 2014: How does the quasi-biennial oscillation affect the stratospheric polar vortex? J. Atmos. Sci., 71, 391409, doi:10.1175/JAS-D-13-096.1.

    • Search Google Scholar
    • Export Citation
  • Yamashita, Y., H. Akiyoshi, and M. Takahashi, 2011: Dynamical response in the Northern Hemisphere midlatitude and high-latitude winter to the QBO simulated by CCSR/NIES CCM. J. Geophys. Res., 116, D06118, doi:10.1029/2010JD015016.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 620 217 13
PDF Downloads 424 112 9