Horizontal Transition of Turbulent Cascade in the Near-Surface Layer of Tropical Cyclones

Jie Tang Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, and Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Jie Tang in
Current site
Google Scholar
PubMed
Close
,
David Byrne Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland

Search for other papers by David Byrne in
Current site
Google Scholar
PubMed
Close
,
Jun A. Zhang National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
,
Yuan Wang Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yuan Wang in
Current site
Google Scholar
PubMed
Close
,
Xiao-tu Lei Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China

Search for other papers by Xiao-tu Lei in
Current site
Google Scholar
PubMed
Close
,
Dan Wu Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China

Search for other papers by Dan Wu in
Current site
Google Scholar
PubMed
Close
,
Ping-zhi Fang Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China

Search for other papers by Ping-zhi Fang in
Current site
Google Scholar
PubMed
Close
, and
Bing-ke Zhao Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China

Search for other papers by Bing-ke Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclones (TC) consist of a large range of interacting scales from hundreds of kilometers to a few meters. The energy transportation among these different scales—that is, from smaller to larger scales (upscale) or vice versa (downscale)—may have profound impacts on TC energy dynamics as a result of the associated changes in available energy sources and sinks. From multilayer tower measurements in the low-level (<120 m) boundary layer of several landing TCs, the authors found there are two distinct regions where the energy flux changes from upscale to downscale as a function of distance to the storm center. The boundary between these two regions is approximately 1.5 times the radius of maximum wind. Two-dimensional turbulence (upscale cascade) occurs more typically at regions close to the inner-core region of TCs, while 3D turbulence (downscale cascade) mostly occurs at the outer-core region in the surface layer.

Corresponding author address: Prof. Yuan Wang, School of Atmospheric Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, China. E-mail: yuanasm@nju.edu.cn

Abstract

Tropical cyclones (TC) consist of a large range of interacting scales from hundreds of kilometers to a few meters. The energy transportation among these different scales—that is, from smaller to larger scales (upscale) or vice versa (downscale)—may have profound impacts on TC energy dynamics as a result of the associated changes in available energy sources and sinks. From multilayer tower measurements in the low-level (<120 m) boundary layer of several landing TCs, the authors found there are two distinct regions where the energy flux changes from upscale to downscale as a function of distance to the storm center. The boundary between these two regions is approximately 1.5 times the radius of maximum wind. Two-dimensional turbulence (upscale cascade) occurs more typically at regions close to the inner-core region of TCs, while 3D turbulence (downscale cascade) mostly occurs at the outer-core region in the surface layer.

Corresponding author address: Prof. Yuan Wang, School of Atmospheric Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, China. E-mail: yuanasm@nju.edu.cn
Save
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetry numerical model simulations. Mon. Wea. Rev., 137, 17701789, doi:10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Byrne, D., and J. A. Zhang, 2013: Height-dependent transition from 3-D to 2-D turbulence in the hurricane boundary layer. Geophys. Res. Lett., 40, 14391442, doi:10.1002/grl.50335.

    • Search Google Scholar
    • Export Citation
  • Byrne, D., H. Xia, and M. Shats, 2011: Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid. Phys. Fluids, 23, 095109, doi:10.1063/1.3638620.

    • Search Google Scholar
    • Export Citation
  • Celani, A., S. Musacchio, and D. Vincenzi, 2010: Turbulence in more than two and less than three dimensions. Phys. Rev. Lett., 104, 184506, doi:10.1103/PhysRevLett.104.184506.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., E. A. Kalina, J. A. Zhang, and E. W. Uhlhorn, 2013: Observations of air–sea interaction and intensity change in hurricanes. Mon. Wea. Rev., 141, 23682382, doi:10.1175/MWR-D-12-00070.1.

    • Search Google Scholar
    • Export Citation
  • De Verdiere, A. C., 1980: Quasi-geostrophic turbulence in a rotating homogeneous fluid. Geophys. Astrophys. Fluid Dyn., 15, 213251, doi:10.1080/03091928008241179.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196, doi:10.1146/annurev.fl.23.010191.001143.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, doi:10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 312 pp.

  • French, J. R., W. D. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, doi:10.1175/JAS3887.1.

    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, doi:10.1175/BAMS-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Hopfinger, E., F. K. Browand, and Y. Gagne, 1982: Turbulence and waves in a rotating tank. J. Fluid Mech., 125, 505534, doi:10.1017/S0022112082003462.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., and P. Carlotti, 2001: Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow Turbul. Combust., 66, 453475, doi:10.1023/A:1013519021030.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 301305.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two‐dimensional turbulence. Phys. Fluids, 10, 1417, doi:10.1063/1.1762301.

  • Marks, F. D., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 10481060, doi:10.1175/MWR-D-12-00135.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. A. Zhang, and R. K. Smith, 2014: An analysis of the observed low-level structure of rapidly intensifying and mature hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 140, 21322146, doi:10.1002/qj.2283.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2013: NOAA’s Hurricane Intensity Forecasting Experiment: A progress report. Bull. Amer. Meteor. Soc., 94, 859882, doi:10.1175/BAMS-D-12-00089.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, doi:10.1175/MWR-D-14-00175.1.

    • Search Google Scholar
    • Export Citation
  • Shats, M., D. Byrne, and H. Xia, 2010: Turbulence decay rate as a measure of flow dimensionality. Phys. Rev. Lett., 105, 264501, doi:10.1103/PhysRevLett.105.264501.

    • Search Google Scholar
    • Export Citation
  • Smith, L. M., J. R. Chasnov, and F. Waleffe, 1996: Crossover from two-to three-dimensional turbulence. Phys. Rev. Lett., 77, 2467, doi:10.1103/PhysRevLett.77.2467.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and N. Van Sang, 2009: Tropical cyclone spin‐up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, doi:10.1002/qj.428.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Xia, H., H. Punzmann, G. Falkovich, and M. Shats, 2008: Turbulence-condensate interaction in two dimensions. Phys. Rev. Lett., 101, 194504, doi:10.1103/PhysRevLett.101.194504.

    • Search Google Scholar
    • Export Citation
  • Xia, H., M. Shats, and G. Falkovich, 2009: Spectrally condensed turbulence in thin layers. Phys. Fluids, 21, 125101, doi:10.1063/1.3275861.

    • Search Google Scholar
    • Export Citation
  • Xia, H., D. Byrne, G. Falkovich, and M. Shats, 2011: Upscale energy transfer in thick turbulent fluid layers. Nat. Phys., 7, 321324, doi:10.1038/nphys1910.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 32233236, doi:10.1175/JAS-D-11-0348.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and M. T. Montgomery, 2012: Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci., 69, 13061316, doi:10.1175/JAS-D-11-0180.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks Jr., M. T. Montgomery, and S. Lorsolo, 2011: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, doi:10.1175/2010MWR3435.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, K., W. C. Lee, and B. J. D. Jou, 2008: Single Doppler radar observation of the concentric eyewall in Typhoon Saomai, 2006, near landfall. Geophys. Res. Lett., 35, L07807, doi:10.1029/2007GL032773.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., J. A. Zhang, and F. J. Masters, 2010: Wavelet analyses of turbulence in the hurricane surface layer during landfalls. J. Atmos. Sci., 67, 37933805, doi:10.1175/2010JAS3437.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 467 234 26
PDF Downloads 290 85 13