Extended Simulation of Tropical Cyclone Formation in the Western North Pacific Monsoon Trough

Liguang Wu Pacific Typhoon Research Center, and Earth System Modeling Center, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Liguang Wu in
Current site
Google Scholar
PubMed
Close
and
Jingjing Duan Pacific Typhoon Research Center, and Earth System Modeling Center, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Jingjing Duan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies suggest that the low-frequency background makes an important contribution to the predictability of tropical cyclone (TC) activity on the intraseasonal time scale by providing large-scale conditions favorable for TC formation. Extended numerical experiments were conducted to demonstrate additional low-frequency influence on TC activity, which results from the development of a synoptic-scale wave train. The cyclonic circulation of the wave train provides low-level synoptic-scale disturbances for TC formation.

The observed TC formation events over the western North Pacific during 14 August–10 September 2004 were first successfully simulated with the initial and lateral conditions derived from the National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis. Then the 27-day extended experiment was repeated only with the initial and lateral boundary conditions derived from the FNL low-frequency (longer than 20 days) background. It is found that the development of the synoptic-scale wave train can be well simulated with TCs forming in the cyclonic circulations of the wave train although the wavelength of the simulated wave train is substantially reduced in the absence of higher-frequency influences with periods shorter than 20 days. Sensitivity experiments indicate that the development of wave trains is sensitive to the initial monsoon trough structure. This study suggests that the synoptic-scale wave train can develop in situ and does not need upstream precursors.

Corresponding author address: Prof. Liguang Wu, Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, 219 Ning Liu Road, Nanjing 210044, China. E-mail: liguang@nuist.edu.cn

Abstract

Previous studies suggest that the low-frequency background makes an important contribution to the predictability of tropical cyclone (TC) activity on the intraseasonal time scale by providing large-scale conditions favorable for TC formation. Extended numerical experiments were conducted to demonstrate additional low-frequency influence on TC activity, which results from the development of a synoptic-scale wave train. The cyclonic circulation of the wave train provides low-level synoptic-scale disturbances for TC formation.

The observed TC formation events over the western North Pacific during 14 August–10 September 2004 were first successfully simulated with the initial and lateral conditions derived from the National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis. Then the 27-day extended experiment was repeated only with the initial and lateral boundary conditions derived from the FNL low-frequency (longer than 20 days) background. It is found that the development of the synoptic-scale wave train can be well simulated with TCs forming in the cyclonic circulations of the wave train although the wavelength of the simulated wave train is substantially reduced in the absence of higher-frequency influences with periods shorter than 20 days. Sensitivity experiments indicate that the development of wave trains is sensitive to the initial monsoon trough structure. This study suggests that the synoptic-scale wave train can develop in situ and does not need upstream precursors.

Corresponding author address: Prof. Liguang Wu, Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, 219 Ning Liu Road, Nanjing 210044, China. E-mail: liguang@nuist.edu.cn
Save
  • Aiyyer, A., and J. Molinari, 2003: Evolution of mixed Rossby–gravity waves in idealized MJO environments. J. Atmos. Sci., 60, 28372855, doi:10.1175/1520-0469(2003)060<2837:EOMRWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, X., T. Li, M. Peng, W. Chen, and G. Chen, 2014: Effects of monsoon trough intraseasonal oscillation on tropical cyclogenesis in the western North Pacific. J. Atmos. Sci., 71, 46394660, doi:10.1175/JAS-D-13-0407.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., V. F. Morris, and J. M. Wallace, 1970: A statistical study of easterly waves in the western Pacific: July–December 1964. J. Atmos. Sci., 27, 195201, doi:10.1175/1520-0469(1970)027<0195:ASSOEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., J. Chen, P. Harr, and L. Carr, 1996: Northwestward propagating wave patterns over the tropical western North Pacific during summer. Mon. Wea. Rev., 124, 22452266, doi:10.1175/1520-0493(1996)124<2245:NPWPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G. H., and R. H. Huang, 2009: Interannual variations in mixed Rossby–gravity waves and their impacts on tropical cyclogenesis over the western North Pacific. J. Climate, 22, 535549, doi:10.1175/2008JCLI2221.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G. H., and C. H. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer. J. Geophys. Res., 115, D14113, doi:10.1029/2009JD013389.

    • Search Google Scholar
    • Export Citation
  • Chen, G. H., and C. Chou, 2014: Joint contribution of multiple equatorial waves to tropical cyclogenesis over the western North Pacific. Mon. Wea. Rev., 142, 7992, doi:10.1175/MWR-D-13-00207.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118, doi:10.2151/jmsj.80.99.

    • Search Google Scholar
    • Export Citation
  • Ching, L., C.-H. Sui, and M.-J. Yang, 2010: An analysis of the multiscale nature of tropical cyclone activities in June 2004: Climate background. J. Geophys. Res., 115, D24108, doi:10.1029/2010JD013803.

    • Search Google Scholar
    • Export Citation
  • Crosbie, E., and Y. Serra, 2014: Intraseasonal modulation of synoptic-scale disturbances and tropical cyclone genesis in the eastern North Pacific. J. Climate, 27, 57245745, doi:10.1175/JCLI-D-13-00399.1.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M., and J. Molinari, 2002: Mixed Rossby–gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59, 21832196, doi:10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1993: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Vertical structure and interannual variability. J. Atmos. Sci., 50, 32923307, doi:10.1175/1520-0469(1993)050<3292:OODMWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and M. P. Baldwin, 1995: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Horizontal structure and propagation. J. Atmos. Sci., 52, 15851601, doi:10.1175/1520-0469(1995)052<1585:OODMWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, doi:10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, doi:10.1175/MWR3204.1.

    • Search Google Scholar
    • Export Citation
  • Gall, J. S., and W. M. Frank, 2010: The role of equatorial Rossby waves in tropical cyclogenesis. Part II: Idealized simulations in a monsoon trough environment. Mon. Wea. Rev., 138, 13831398, doi:10.1175/2009MWR3115.1.

    • Search Google Scholar
    • Export Citation
  • Gall, J. S., W. M. Frank, and M. C. Wheeler, 2010: The role of equatorial Rossby waves in tropical cyclogenesis. Part I: Idealized numerical simulations in an initially quiescent background environment. Mon. Wea. Rev., 138, 13681382, doi:10.1175/2009MWR3114.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, doi:10.1007/BF01277501.

  • Hartmann, D. L., and E. D. Maloney, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part II: Stochastic barotropic modeling. J. Atmos. Sci., 58, 25592570, doi:10.1175/1520-0469(2001)058<2559:TMJOBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14, 403417, doi:10.1175/1520-0442(2001)014<0403:IOTPMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1995: Scale interaction in the Western Pacific Monsoon. Meteor. Atmos. Phys., 56, 5779, doi:10.1007/BF01022521.

  • Hsu, H.-H., C.-H. Hung, A.-K. Lo, C.-C. Wu, and C.-W. Hung, 2008: Influence of tropical cyclones on the estimation of climate variability in the tropical western North Pacific. J. Climate, 21, 29602975, doi:10.1175/2007JCLI1847.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927941, doi:10.1175/2010JCLI3833.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X. A., M. Zhao, and D. E. Waliser, 2012: Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 65246538, doi:10.1175/JCLI-D-11-00531.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritch, 1993: Convective parameterization for mesoscale models: The Kain–Fritch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165170.

  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, doi:10.1175/2008JCLI2368.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and H. Fudeyasu, 2009: Genesis of tropical cyclone Nargis revealed by multiple satellite observations. Geophys. Res. Lett., 36, L06811, doi:10.1029/2009GL037296.

    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-I. Lee, H.-M. Kim, and J. H. Yoo, 2014: The modulation of tropical storm activity in the western North Pacific by the Madden–Julian Oscillation in GEOS-5 AGCM experiments. Atmos. Sci. Lett., 15, 335341, doi:10.1002/asl2.509.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2010: On the Madden–Julian oscillation–Atlantic hurricane relationship. J. Climate, 23, 282293, doi:10.1175/2009JCLI2978.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., J.-H. Chen, R. T. Williams, and C.-P. Chang, 2001: Rossby waves in zonally opposing mean flow: Behavior in northwest Pacific summer monsoon. J. Atmos. Sci., 58, 10351050, doi:10.1175/1520-0469(2001)058<1035:RWIZOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, doi:10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 27912801, doi:10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lanczos, C., 1956: Applied Analysis. Prentice Hall, 539 pp.

  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913, doi:10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leroy, A., and M. C. Wheeler, 2008: Statistical prediction of the weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 136, 36373654, doi:10.1175/2008MWR2426.1.

    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013a: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 29042918, doi:10.1175/JCLI-D-12-00210.1.

    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013b: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 29192930, doi:10.1175/JCLI-D-12-00211.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 10931102, doi:10.1175/JAS3676.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones: Formation, Triggers and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 61–94.

  • Li, T., and B. Fu, 2006: Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite data analyses. J. Atmos. Sci., 63, 13771389, doi:10.1175/JAS3692.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Fu, X. Ge, B. Wang, and M. Peng, 2003: Satellite data analysis and numerical simulation of tropical cyclone formation. Geophys. Res. Lett., 30, 2122, doi:10.1029/2003GL018556.

    • Search Google Scholar
    • Export Citation
  • Li, T., X. Ge, B. Wang, and Y. T. Zhu, 2006: Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part II: Numerical simulations. J. Atmos. Sci., 63, 13901409, doi:10.1175/JAS3693.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 14631479, doi:10.1175/1520-0469(1990)047<1463:SSDNTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401412.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, doi:10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, doi:10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 21532168, doi:10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Wea. Rev., 128, 40974107, doi:10.1175/1520-0493(2000)129<4097:TABIOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708, doi:10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., K. Lombardo, and D. Vollaro, 2007: Tropical cyclogenesis within an equatorial Rossby wave packet. J. Atmos. Sci., 64, 13011317, doi:10.1175/JAS3902.1.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 19631987.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., Z. Wang, and T. J. Dunkerton, 2009: Intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm. Atmos. Chem. Phys. Discuss., 9, 26 14326 197, doi:10.5194/acpd-9-26143-2009.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., Z. Wang, and T. J. Dunkerton, 2010: Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm. Atmos. Chem. Phys., 10, 10 80310 827, doi:10.5194/acp-10-10803-2010.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 2006: Madden-Julian Oscillation activity and typhoon landfall on Japan in 2004. SOLA, 2, 136139, doi:10.2151/sola.2006-035.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vertterling, and B. P. Flannery, 2007: Numerical Recipes. 3rd ed. Cambridge University Press, 1256 pp.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133, doi:10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043, doi:10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2012: The intra-seasonal oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models. Climate Dyn., 39, 21852206, doi:10.1007/s00382-011-1235-6.

    • Search Google Scholar
    • Export Citation
  • Savitzky, A., and M. J. E. Golay, 1964: Soothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36, 16271639, doi:10.1021/ac60214a047.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., and J. Molinari, 2011: Tropical cyclogenesis associated with Kelvin waves and the Madden–Julian oscillation. Mon. Wea. Rev., 139, 27232733, doi:10.1175/MWR-D-10-05060.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., J. Molinari, and A. Aiyyer, 2012: A global view of equatorial waves and tropical cyclogenesis. Mon. Wea. Rev., 140, 774788, doi:10.1175/MWR-D-11-00110.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742, doi:10.1029/1999GL011043.

    • Search Google Scholar
    • Export Citation
  • Tai, K. S., and Y. Ogura, 1987: An observational study of eastern waves over the eastern Pacific in the northern summer using FGGE data. J. Atmos. Sci., 44, 339361, doi:10.1175/1520-0469(1987)044<0339:AOSOEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3-5 day period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221245.

    • Search Google Scholar
    • Export Citation
  • Tam, C. Y., and T. Li, 2006: The origin and dispersion characteristics of the observed tropical summertime synoptic-scale waves over the western Pacific. Mon. Wea. Rev., 134, 16301646, doi:10.1175/MWR3147.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., A. Leroy, and M. C. Wheeler, 2010: A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 138, 36713682, doi:10.1175/2010MWR3343.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and C.-P. Chang, 1969: Spectrum analysis of large-scale wave disturbances in the tropical lower troposphere. J. Atmos. Sci., 26, 10101025, doi:10.1175/1520-0469(1969)026<1010:SAOLSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Springer, 307–360.

  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010: Genesis of pre–Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744, doi:10.1175/2010JAS3435.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., T. J. Dunkerton, and M. T. Montgomery, 2012: Application of the marsupial paradigm to tropical cyclone formation from northwestward-propagating disturbances. Mon. Wea. Rev., 140, 6676, doi:10.1175/2011MWR3604.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 6586, doi:10.1175/JAS3597.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Zong, and J. Liang, 2013: Observational analysis of tropical cyclone formation associated with monsoon gyres. J. Atmos. Sci., 70, 10231034, doi:10.1175/JAS-D-12-0117.1.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., and Coauthors, 2015: Beyond weather time-scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143, 524535, doi:10.1175/MWR-D-14-00227.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., T. Li, and M. Peng, 2014: Roles of synoptic-scale wave train, intraseasonal oscillation, and high-frequency eddies in genesis of Typhoon Manyi (2001). J. Atmos. Sci., 71, 37063722, doi:10.1175/JAS-D-13-0406.1.

    • Search Google Scholar
    • Export Citation
  • Zehr, R., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 16, 181 pp.

  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhou, C., and T. Li, 2010: Upscale feedback of tropical synoptic variability to intraseasonal oscillations through the nonlinear rectification of the surface latent heat flux. J. Climate, 23, 57385754, doi:10.1175/2010JCLI3468.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 410 144 12
PDF Downloads 281 106 10