Wave-Induced Boundary Layer Separation in the Lee of the Medicine Bow Mountains. Part II: Numerical Modeling

Vanda Grubišić National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Vanda Grubišić in
Current site
Google Scholar
PubMed
Close
,
Stefano Serafin Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria

Search for other papers by Stefano Serafin in
Current site
Google Scholar
PubMed
Close
,
Lukas Strauss Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria

Search for other papers by Lukas Strauss in
Current site
Google Scholar
PubMed
Close
,
Samuel J. Haimov Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Samuel J. Haimov in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. French Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Jeffrey R. French in
Current site
Google Scholar
PubMed
Close
, and
Larry D. Oolman Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Larry D. Oolman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mountain waves and rotors in the lee of the Medicine Bow Mountains in southeastern Wyoming are investigated in a two-part paper. Part I by French et al. delivers a detailed observational account of two rotor events: one displays characteristics of a hydraulic jump and the other displays characteristics of a classic lee-wave rotor. In Part II, presented here, results of high-resolution numerical simulations are conveyed and physical processes involved in the formation and dynamical evolution of these two rotor events are examined.

The simulation results reveal that the origin of the observed rotors lies in boundary layer separation, induced by wave perturbations whose amplitudes reach maxima at or near the mountain top. An undular hydraulic jump that gave rise to a rotor in one of these events was found to be triggered by midtropospheric wave breaking and an ensuing strong downslope windstorm. Lee waves spawning rotors developed under conditions favoring wave energy trapping at low levels in different phases of these two events. The upstream shift of the boundary layer separation zone, documented to occur over a relatively short period of time in both events, is shown to be the manifestation of a transition in flow regimes, from downslope windstorms to trapped lee waves, in response to a rapid change in the upstream environment, related to the passage of a short-wave synoptic disturbance aloft.

The model results also suggest that the secondary obstacles surrounding the Medicine Bow Mountains play a role in the dynamics of wave and rotor events by promoting lee-wave resonance in the complex terrain of southeastern Wyoming.

Denotes Open Access content.

Additional affiliation: Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Vanda Grubišić, NCAR Earth Observing Laboratory, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: grubisic@ucar.edu

Abstract

Mountain waves and rotors in the lee of the Medicine Bow Mountains in southeastern Wyoming are investigated in a two-part paper. Part I by French et al. delivers a detailed observational account of two rotor events: one displays characteristics of a hydraulic jump and the other displays characteristics of a classic lee-wave rotor. In Part II, presented here, results of high-resolution numerical simulations are conveyed and physical processes involved in the formation and dynamical evolution of these two rotor events are examined.

The simulation results reveal that the origin of the observed rotors lies in boundary layer separation, induced by wave perturbations whose amplitudes reach maxima at or near the mountain top. An undular hydraulic jump that gave rise to a rotor in one of these events was found to be triggered by midtropospheric wave breaking and an ensuing strong downslope windstorm. Lee waves spawning rotors developed under conditions favoring wave energy trapping at low levels in different phases of these two events. The upstream shift of the boundary layer separation zone, documented to occur over a relatively short period of time in both events, is shown to be the manifestation of a transition in flow regimes, from downslope windstorms to trapped lee waves, in response to a rapid change in the upstream environment, related to the passage of a short-wave synoptic disturbance aloft.

The model results also suggest that the secondary obstacles surrounding the Medicine Bow Mountains play a role in the dynamics of wave and rotor events by promoting lee-wave resonance in the complex terrain of southeastern Wyoming.

Denotes Open Access content.

Additional affiliation: Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Vanda Grubišić, NCAR Earth Observing Laboratory, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: grubisic@ucar.edu
Save
  • Ambaum, M. H., and D. P. Marshall, 2005: The effects of stratification on flow separation. J. Atmos. Sci., 62, 26182625, doi:10.1175/JAS3485.1.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1997: Topographic Effects in Stratified Flows. Cambridge University Press, 500 pp.

  • Baines, P. G., and K. P. Hoinka, 1985: Stratified flow over two-dimensional topography of fluid of infinite depth: A laboratory simulation. J. Atmos. Sci., 42, 16141630, doi:10.1175/1520-0469(1985)042<1614:SFOTDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G., 1967: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

  • Crook, N. A., 1986: The effect of ambient stratification and moisture on the motion of atmospheric undular bores. J. Atmos. Sci., 43, 171181, doi:10.1175/1520-0469(1986)043<0171:TEOASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., 2002: Structure and morphology of the convective boundary layer in mountainous terrain. Ph.D. thesis, University of British Columbia, 138 pp.

  • Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59, 186201, doi:10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and D. R. Durran, 2007: Rotor and subrotor dynamics in the lee of three-dimensional terrain. J. Atmos. Sci., 64, 42024221, doi:10.1175/2007JAS2352.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and C. A. Reynolds, 2008: Implications of regime transitions for mountain-wave-breaking predictability. Mon. Wea. Rev., 136, 52115223, doi:10.1175/2008MWR2554.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • French, J., S. Haimov, L. Oolman, V. Grubišić, S. Serafin, and L. Strauss, 2015: Wave-induced boundary layer separation in the lee of the Medicine Bow Mountains. Part I: Observations. J. Atmos. Sci., 72, 48454863, doi:10.1175/JAS-D-14-0376.1.

    • Search Google Scholar
    • Export Citation
  • Gohm, A., G. J. Mayr, A. Fix, and A. Giez, 2008: On the onset of bora and the formation of rotors and jumps near a mountain gap. Quart. J. Roy. Meteor. Soc., 134, 2146, doi:10.1002/qj.206.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and B. J. Billings, 2007: The intense lee-wave rotor event of Sierra Rotors IOP 8. J. Atmos. Sci., 64, 41784201, doi:10.1175/2006JAS2008.1.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and I. Stiperski, 2009: Lee-wave resonances over double bell-shaped obstacles. J. Atmos. Sci., 66, 12051228, doi:10.1175/2008JAS2885.1.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and Coauthors, 2008: The Terrain-Induced Rotor Experiment: A field campaign overview including observational highlights. Bull. Amer. Meteor. Soc., 89, 15131533, doi:10.1175/2008BAMS2487.1.

    • Search Google Scholar
    • Export Citation
  • Hertenstein, R. F., and J. P. Kuettner, 2005: Rotor types associated with steep lee topography: Influence of the wind profile. Tellus, 57A, 117135, doi:10.1111/j.1600-0870.2005.00099.x.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. National Centers for Environmental Prediction Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Jiang, Q., and J. D. Doyle, 2008: Diurnal variation of downslope winds in Owens Valley during the Sierra Rotor experiment. Mon. Wea. Rev., 136, 37603780, doi:10.1175/2008MWR2469.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., J. D. Doyle, and R. B. Smith, 2006: Interaction between trapped waves and boundary layers. J. Atmos. Sci., 63, 617633, doi:10.1175/JAS3640.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., J. D. Doyle, S. Wang, and R. B. Smith, 2007: On boundary layer separation in the lee of mesoscale topography. J. Atmos. Sci., 64, 401420, doi:10.1175/JAS3848.1.

    • Search Google Scholar
    • Export Citation
  • Knigge, C., D. Etling, A. Paci, and O. Eiff, 2010: Laboratory experiments on mountain-induced rotors. Quart. J. Roy. Meteor. Soc., 136, 442450, doi:10.1002/qj.564.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Rev., 120, 197207, doi:10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1986: An Informal Introduction to Theoretical Fluid Mechanics. Clarendon Press, 272 pp.

  • Mahrer, Y., 1984: An improved numerical approximation of the horizontal gradients in a terrain-following coordinate system. Mon. Wea. Rev., 112, 918922, doi:10.1175/1520-0493(1984)112<0918:AINAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., and P. J. Dawson, 1984: Low-level airflow in southern Wyoming during wintertime. Mon. Wea. Rev., 112, 12461262, doi:10.1175/1520-0493(1984)112<1246:LLAISW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mayr, G. J., and L. Armi, 2010: The influence of downstream diurnal heating on the descent of flow across the Sierras. J. Appl. Meteor. Climatol., 49, 19061912, doi:10.1175/2010JAMC2516.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mobbs, S. D., and Coauthors, 2005: Observations of downslope winds and rotors in the Falkland Islands. Quart. J. Roy. Meteor. Soc., 131, 329351, doi:10.1256/qj.04.51.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and D. R. Durran, 2009: Initial-condition sensitivities and the predictability of downslope winds. J. Atmos. Sci., 66, 34013418, doi:10.1175/2009JAS3023.1.

    • Search Google Scholar
    • Export Citation
  • Scorer, R., 1958: Natural Aerodynamics. Pergamon Press, 312 pp.

  • Sheridan, P. F., V. Horlacher, G. G. Rooney, P. Hignett, S. D. Mobbs, and S. B. Vosper, 2007: Influence of lee waves on the near-surface flow downwind of the Pennines. Quart. J. Roy. Meteor. Soc., 133, 13531369, doi:10.1002/qj.110.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and J. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2007: Interacting mountain waves and boundary layers. J. Atmos. Sci., 64, 594607, doi:10.1175/JAS3836.1.

  • Smith, R. B., Q. Jiang, and J. D. Doyle, 2006: A theory of gravity wave absorption by a boundary layer. J. Atmos. Sci., 63, 774781, doi:10.1175/JAS3631.1.

    • Search Google Scholar
    • Export Citation
  • Stiperski, I., and V. Grubišić, 2011: Trapped lee wave interference in the presence of surface friction. J. Atmos. Sci., 68, 918936, doi:10.1175/2010JAS3495.1.

    • Search Google Scholar
    • Export Citation
  • Strauss, L., S. Serafin, S. Haimov, and V. Grubišić, 2015: Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements. Quart. J. Royal. Meteor. Soc., doi:10.1002/qj.2604, in press.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2004: Inversion effects on mountain lee waves. Quart. J. Roy. Meteor. Soc., 130, 17231748, doi:10.1256/qj.03.63.

  • Vosper, S. B., P. F. Sheridan, and A. Brown, 2006: Flow separation and rotor formation beneath two-dimensional trapped lee waves. Quart. J. Roy. Meteor. Soc., 132, 24152438, doi:10.1256/qj.05.174.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 260 70 11
PDF Downloads 136 67 8